×

Almost global existence for 2-D incompressible isotropic elastodynamics. (English) Zbl 1330.35247

Summary: We consider the Cauchy problem for 2-D incompressible isotropic elastodynamics. Standard energy methods yield local solutions on a time interval \( [0,{T}/{\epsilon }]\) for initial data of the form \( \epsilon U_0\), where \( T\) depends only on some Sobolev norm of \( U_0\). We show that for such data there exists a unique solution on a time interval \( [0, \exp {T}/{\epsilon }]\), provided that \( \epsilon \) is sufficiently small. This is achieved by careful consideration of the structure of the nonlinearity. The incompressible elasticity equation is inherently linearly degenerate in the isotropic case; in other words, the equation satisfies a null condition. This is essential for time decay estimates. The pressure, which arises as a Lagrange multiplier to enforce the incompressibility constraint, is estimated in a novel way as a nonlocal nonlinear term with null structure. The proof employs the generalized energy method of S. Klainerman [in: Nonlinear systems of partial differential equations in applied mathematics, Proc. SIAM-AMS Summer Semin., Santa Fe/N.M. 1984, Lect. Appl. Math. 23, Pt. 1, 293–326 (1986; Zbl 0599.35105)], enhanced by weighted \( L^2\) estimates and the ghost weight introduced by S. Alinhac [Invent. Math. 145, No. 3, 597–618 (2001; Zbl 1112.35341)].

MSC:

35L60 First-order nonlinear hyperbolic equations
74B20 Nonlinear elasticity
35Q74 PDEs in connection with mechanics of deformable solids
35L45 Initial value problems for first-order hyperbolic systems

References:

[1] Agemi, Rentaro, Global existence of nonlinear elastic waves, Invent. Math., 142, 2, 225-250 (2000) · Zbl 1095.35009 · doi:10.1007/s002220000084
[2] Alinhac, S., The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145, 3, 597-618 (2001) · Zbl 1112.35341 · doi:10.1007/s002220100165
[3] Chen, Yemin; Zhang, Ping, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31, 10-12, 1793-1810 (2006) · Zbl 1105.76008 · doi:10.1080/03605300600858960
[4] Christodoulou, Demetrios, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39, 2, 267-282 (1986) · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[5] He, Lingbing; Xu, Li, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42, 6, 2610-2625 (2010) · Zbl 1278.76010 · doi:10.1137/10078503X
[6] Hoshiga, Akira, The initial value problems for quasi-linear wave equations in two space dimensions with small data, Adv. Math. Sci. Appl., 5, 1, 67-89 (1995) · Zbl 0829.35080
[7] Hu, Xianpeng; Wang, Dehua, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250, 2, 1200-1231 (2011) · Zbl 1208.35111 · doi:10.1016/j.jde.2010.10.017
[8] John, Fritz, Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math., 34, 1, 29-51 (1981) · Zbl 0453.35060 · doi:10.1002/cpa.3160340103
[9] John, Fritz, Formation of singularities in elastic waves. Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), Lecture Notes in Phys. 195, 194-210 (1984), Springer: Berlin:Springer · Zbl 0563.73022 · doi:10.1007/3-540-12916-2\_58
[10] John, Fritz, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, Comm. Pure Appl. Math., 41, 5, 615-666 (1988) · Zbl 0635.35066 · doi:10.1002/cpa.3160410507
[11] John, F.; Klainerman, S., Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., 37, 4, 443-455 (1984) · Zbl 0599.35104 · doi:10.1002/cpa.3160370403
[12] Katayama, Soichiro, Global existence for systems of nonlinear wave equations in two space dimensions. II, Publ. Res. Inst. Math. Sci., 31, 4, 645-665 (1995) · Zbl 0864.35075 · doi:10.2977/prims/1195163919
[13] Kessenich, Paul, Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials, 93 pp., ProQuest LLC, Ann Arbor, MI
[14] Klainerman, S., The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math. 23, 293-326 (1986), Amer. Math. Soc.: Providence, RI:Amer. Math. Soc. · Zbl 0599.35105
[15] Klainerman, Sergiu; Sideris, Thomas C., On almost global existence for nonrelativistic wave equations in \(3\) D, Comm. Pure Appl. Math., 49, 3, 307-321 (1996) · Zbl 0867.35064 · doi:10.1002/(SICI)1097-0312(199603)49:\(3\langle
[16] Lei, Zhen, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions, Discrete Contin. Dyn. Syst., 34, 7, 2861-2871 (2014) · Zbl 1292.76029 · doi:10.3934/dcds.2014.34.2861
[17] Lei, Zhen, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198, 1, 13-37 (2010) · Zbl 1258.74031 · doi:10.1007/s00205-010-0346-2
[18] Lei, Zhen; Liu, Chun; Zhou, Yi, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5, 3, 595-616 (2007) · Zbl 1132.76008
[19] Lei, Zhen; Liu, Chun; Zhou, Yi, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188, 3, 371-398 (2008) · Zbl 1138.76017 · doi:10.1007/s00205-007-0089-x
[20] Lei, Zhen; Zhou, Yi, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37, 3, 797-814 (electronic) (2005) · Zbl 1130.76308 · doi:10.1137/040618813
[21] Katayama, Soichiro, Global existence for systems of nonlinear wave equations in two space dimensions. II, Publ. Res. Inst. Math. Sci., 31, 4, 645-665 (1995) · Zbl 0864.35075 · doi:10.2977/prims/1195163919
[22] Lin, Fang-Hua; Liu, Chun; Zhang, Ping, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58, 11, 1437-1471 (2005) · Zbl 1076.76006 · doi:10.1002/cpa.20074
[23] Lin, Fanghua; Zhang, Ping, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61, 4, 539-558 (2008) · Zbl 1137.35414 · doi:10.1002/cpa.20219
[24] Qian, Jianzhen, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72, 6, 3222-3234 (2010) · Zbl 1397.35224 · doi:10.1016/j.na.2009.12.022
[25] Qian, Jianzhen, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250, 2, 848-865 (2011) · Zbl 1272.76190 · doi:10.1016/j.jde.2010.07.026
[26] Qian, Jianzhen; Zhang, Zhifei, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198, 3, 835-868 (2010) · Zbl 1231.35176 · doi:10.1007/s00205-010-0351-5
[27] Sideris, Thomas C., The null condition and global existence of nonlinear elastic waves, Invent. Math., 123, 2, 323-342 (1996) · Zbl 0844.73016 · doi:10.1007/s002220050030
[28] Sideris, Thomas C., Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151, 2, 849-874 (2000) · Zbl 0957.35126 · doi:10.2307/121050
[29] Sideris, Thomas C.; Thomases, Becca, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58, 6, 750-788 (2005) · Zbl 1079.74028 · doi:10.1002/cpa.20049
[30] Sideris, Thomas C.; Thomases, Becca, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems, J. Hyperbolic Differ. Equ., 3, 4, 673-690 (2006) · Zbl 1108.35016 · doi:10.1142/S0219891606000975
[31] Sideris, Thomas C.; Thomases, Becca, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60, 12, 1707-1730 (2007) · Zbl 1127.74016 · doi:10.1002/cpa.20196
[32] Sideris, Thomas C.; Tu, Shu-Yi, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33, 2, 477-488 (electronic) (2001) · Zbl 1002.35091 · doi:10.1137/S0036141000378966
[33] Tahvildar-Zadeh, A. Shadi, Relativistic and nonrelativistic elastodynamics with small shear strains, Ann. Inst. H. Poincar\'e Phys. Th\'eor., 69, 3, 275-307 (1998) · Zbl 0930.74008
[34] Yokoyama, Kazuyoshi, Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52, 3, 609-632 (2000) · Zbl 0968.35081 · doi:10.2969/jmsj/05230609
[35] [ZF-1] T. Zhang and D. Fang, Global well-posedness for the incompressible viscoelastic fluids in the critical \(L^p\) framework, available at arXiv:1101.5864.
[36] [ZF-2] T. Zhang and D. Fang, Global existence in critical spaces for incompressible viscoelastic fluids, available at arXiv:1101.5862. · Zbl 1301.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.