×

Correlation kernels for sums and products of random matrices. (English) Zbl 1330.15040

Summary: Let \(X\) be a random matrix whose squared singular value density is a polynomial ensemble. We derive double contour integral formulas for the correlation kernels of the squared singular values of \(GX\) and \(TX\), where \(G\) is a complex Ginibre matrix and \(T\) is a truncated unitary matrix. We also consider the product of \(X\) and several complex Ginibre/truncated unitary matrices. As an application, we derive the precise condition for the squared singular values of the product of several truncated unitary matrices to follow a polynomial ensemble. We also consider the sum \(H+M\) where \(H\) is a Gaussian unitary ensemble matrix and \(M\) is a random matrix whose eigenvalue density is a polynomial ensemble. We show that the eigenvalues of \(H+M\) follow a polynomial ensemble whose correlation kernel can be expressed as a double contour integral. As an application, we point out a connection to the two-matrix model.

MSC:

15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
15A18 Eigenvalues, singular values, and eigenvectors
33C60 Hypergeometric integrals and functions defined by them (\(E\), \(G\), \(H\) and \(I\) functions)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis

Software:

DLMF

References:

[1] 1. M. Adler, P. van Moerbeke and D. Wang, Random matrix minor processes related to percolation theory, Random Matrices Theory Appl.2(4) (2013), Article ID: 1350008, 72 pp. [Abstract] · Zbl 1298.60014
[2] 2. G. Akemann and J. R. Ipsen, Recent exact and asymptotic results for products of independent random matrices, Acta. Phys. Polon. B46(9) (2015) 1747-1784. genRefLink(16, ’S2010326315500173BIB2’, ’10.5506 · Zbl 1371.60008
[3] 3. G. Akemann, J. R. Ipsen and M. Kieburg, Products of rectangular random matrices: Singular values and progressive scattering, Phys. Rev. E88(5) (2013) 052118. genRefLink(16, ’S2010326315500173BIB3’, ’10.1103
[4] 4. G. Akemann, M. Kieburg and L. Wei, Singular value correlation functions for products of Wishart random matrices, J. Phys. A46(27) (2013) 275205. genRefLink(16, ’S2010326315500173BIB4’, ’10.1088 · Zbl 1271.15022
[5] 5. J. Baik, G. Ben Arous and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab.33(5) (2005) 1643-1697. genRefLink(16, ’S2010326315500173BIB5’, ’10.1214 · Zbl 1086.15022
[6] 6. R. Beals and J. Szmigielski, Meijer G-functions: A gentle introduction, Notices Amer. Math. Soc.60(7) (2013) 866-872. genRefLink(16, ’S2010326315500173BIB6’, ’10.1090
[7] 7. P. M. Bleher and A. B. J. Kuijlaars, Integral representations for multiple Hermite and multiple Laguerre polynomials, Ann. Inst. Fourier (Grenoble)55(6) (2005) 2001-2014. genRefLink(16, ’S2010326315500173BIB7’, ’10.5802 · Zbl 1084.33008
[8] 8. A. Borodin and S. Péché, Airy kernel with two sets of parameters in directed percolation and random matrix theory, J. Statist. Phys.132(2) (2008) 275-290. genRefLink(16, ’S2010326315500173BIB8’, ’10.1007 · Zbl 1145.82021
[9] 9. E. Brézin and S. Hikami, Correlations of nearby levels induced by a random potential, Nuclear Phys. B479(3) (1996) 697-706. genRefLink(16, ’S2010326315500173BIB9’, ’10.1016
[10] 10. P. A. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, Vol. 3 (New York University Courant Institute of Mathematical Sciences, New York, 1999). · Zbl 0997.47033
[11] 11. P. A. Deift and D. Gioev, Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, Vol. 3 (Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2009). · Zbl 1171.15023
[12] 12. A. B. Dieker and J. Warren, On the largest-eigenvalue process for generalized Wishart random matrices, ALEA Lat. Amer. J. Probab. Math. Stat.6 (2009) 369-376. · Zbl 1276.60008
[13] 13. M. Duits, Painlevé kernels in Hermitian matrix models, Constr. Approx.39(1) (2014) 173-196. genRefLink(16, ’S2010326315500173BIB13’, ’10.1007
[14] 14. M. Duits and D. Geudens, A critical phenomenon in the two-matrix model in the quartic/quadratic case, Duke Math. J.162(8) (2013) 1383-1462. genRefLink(16, ’S2010326315500173BIB14’, ’10.1215 · Zbl 1286.60006
[15] 15. A. S. Fokas, A. R. Its and A. V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys.147(2) (1992) 395-430. genRefLink(16, ’S2010326315500173BIB15’, ’10.1007 · Zbl 0760.35051
[16] 16. P. J. Forrester, Log-Gases and Random Matrices, London Mathematical Society Monographs Series, Vol. 34 (Princeton University Press, Princeton, NJ, 2010). genRefLink(16, ’S2010326315500173BIB16’, ’10.1515 · Zbl 1217.82003
[17] 17. P. J. Forrester, Eigenvalue statistics for product complex Wishart matrices, J. Phys. A47(34) (2014) 345202. genRefLink(16, ’S2010326315500173BIB17’, ’10.1088
[18] 18. P. J. Forrester and D.-Z. Liu, Raney distributions and random matrix theory, J. Statist. Phys.158(5) (2015) 1051-1082. genRefLink(16, ’S2010326315500173BIB18’, ’10.1007 · Zbl 1352.60024
[19] 19. P. J. Forrester and D.-Z. Liu, Singular values for products of complex Ginibre matrices with a source: Hard edge limit and phase transition, preprint (2015), arXiv:1503.07955.
[20] 20. P. J. Forrester and T. Nagao, Determinantal correlations for classical projection processes, J. Stat. Mech. Theory Exp.2011(8) (2011) P08011. genRefLink(16, ’S2010326315500173BIB20’, ’10.1088
[21] 21. P. J. Forrester and D. Wang, Muttalib-Borodin ensembles in random matrix theory – realisations and correlation functions, preprint (2015), arXiv:1502.07147. · Zbl 1366.60009
[22] 22. I. I. Hirschman and D. V. Widder, The Convolution Transform (Princeton University Press, Princeton, NJ, 1955). · Zbl 0039.33202
[23] 23. T. Imamura and T. Sasamoto, Determinantal structures in the O’Connell-Yor directed random polymer model, preprint (2015), arXiv:1506.05548. · Zbl 1342.82163
[24] 24. K. Johansson, Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys.215(3) (2001) 683-705. genRefLink(16, ’S2010326315500173BIB24’, ’10.1007 · Zbl 0978.15020
[25] 25. M. Kieburg, A. B. J. Kuijlaars and D. Stivigny, Singular value statistics of matrix products with truncated unitary matrices, to appear in Int. Math. Res. Not. IMRN, arXiv:1501.03910.
[26] 26. A. B. J. Kuijlaars, Transformations of polynomial ensembles, preprint (2015), arXiv:1501.05506. · Zbl 1375.60021
[27] 27. A. B. J. Kuijlaars and D. Stivigny, Singular values of products of random matrices and polynomial ensembles, Random Matrices Theory Appl.3(3) (2014), Article ID: 1450011, 22 pp. [Abstract] · Zbl 1303.15045
[28] 28. A. B. J. Kuijlaars and L. Zhang, Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits, Comm. Math. Phys.332(2) (2014) 759-781. genRefLink(16, ’S2010326315500173BIB28’, ’10.1007
[29] 29. D.-Z. Liu, D. Wang and L. Zhang, Bulk and soft-edge universality for singular values of products of Ginibre random matrices, to appear in Ann. Inst. Henri Poincaré Probab. Stat., arXiv:1412.6777.
[30] 30. Y. L. Luke, The Special Functions and Their Approximations, Vol. 1, Mathematics in Science and Engineering, Vol. 53 (Academic Press, New York, 1969). · Zbl 0193.01701
[31] 31. A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, Vol. 335 (Cambridge University Press, Cambridge, 2006). genRefLink(16, ’S2010326315500173BIB31’, ’10.1017 · Zbl 1133.60003
[32] 32. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions (U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010). With 1 CD-ROM (Windows, Macintosh and UNIX).
[33] 33. E. Strahov, Dynamical correlation functions for products of random matrices, preprint (2015), arXiv:1505.02511. · Zbl 1330.15043
[34] 34. K. \.Zyczkowski and H.-J. Sommers, Truncations of random unitary matrices, J. Phys. A33(10) (2000) 2045-2057. genRefLink(16, ’S2010326315500173BIB34’, ’10.1088 · Zbl 0957.82017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.