×

Measure-valued solutions of nonlinear parabolic equations with logarithmic diffusion. (English) Zbl 1329.35176

The authors study the existence and regularity of a Radon measure-valued solution for a class of Cauchy problems for nonlinear degenerate parabolic equations of the form \[ \begin{cases} u_t=\Delta (\psi(u)) & \text{in} \;\Omega\times(0,T),\\ u=0 & \text{on} \;\partial\Omega\times(0,T),\\ u=u_0 & \text{in} \;\Omega\times\{0\}, \end{cases} \] where \(\Omega\subset \mathbb{R}^N,\) \(N\geq2,\) is a bounded and smooth domain and the initial datum \(u_0\) is a bounded Radon measure. Regarding the function \(\psi\in C^\infty(\mathbb{R}),\) it is supposed that \(\psi(0)=0,\) \(\psi'(s)>0\) and there exist \(s_0>0\) and \(\beta>\alpha>0\) such that \[ \dfrac{\alpha}{1+|s|}\leq \psi'(s)\leq \dfrac{\beta}{1+|s|}\quad \text{for all } |s|\geq s_0. \] In particular, it is proved that a regularizing effect appears if the initial datum is diffused with respect to the “\(C_2\)-capacity”, since in this case the solution becomes a summable function. Moreover, the uniqueness of measure-valued solutions is studied as well.

MSC:

35K65 Degenerate parabolic equations
35R06 PDEs with measure
Full Text: DOI

References:

[1] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G.: Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl. 182, 53-79 (2003) · Zbl 1105.35040 · doi:10.1007/s10231-002-0056-y
[2] Boccardo L., Brezis H.: Some remarks on a class of elliptic equations with degenerate coercivity. Boll. Unione Mat. Ital. 6, 521-530 (2003) · Zbl 1178.35183
[3] Boccardo L., Croce G., Orsina L. Nonlinear degenerate elliptic problems with \[{{W_0^{1,1}}}\] W01,1 solutions, Manuscripta Mathematica, (2012), vol. 137, N. 3-4, 419-439. · Zbl 1272.35050
[4] Boccardo, L., Croce, G., Orsina, L.: A semilinear problem with a \[{{W_0^{1,1}}}\] W01,1 solution, Rend. Lincei Mat. Appl. 23 (2012), 97-123. · Zbl 1247.35037
[5] Boccardo L., Dall’Aglio A., Orsina L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena, 46, 51-81 (1998) · Zbl 0911.35049
[6] Boccardo L., Gallouët T., Orsina L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré 13, 539-551 (1996) · Zbl 0857.35126
[7] Boccardo L., Porzio M.M.: Some degenerate parabolic equations: existence and decay properties, Discrete and Continuous Dynamical Systems Series S, vol. 7, n. 4, (2014), 617-629 · Zbl 1295.35272
[8] Brezis H., Friedman A.: Nonlinear Parabolic Equations Involving Measures as Initial Conditions. J. Math. Pures Appl. 62, 73-97 (1983) · Zbl 0527.35043
[9] Chasseigne E., Vazquez J.L.: Theory of Extended Solutions for Fast-Diffusion Equations in Optimal Classes of Data. Radiation from Singularities. Arch. Rational Mech. Anal. 164, 133-187 (2002) · Zbl 1018.35048 · doi:10.1007/s00205-002-0210-0
[10] Dall’Aglio, A.: Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240. · Zbl 0869.35050
[11] Dal Maso G.: unpublished SISSA lecture notes.
[12] Evans L.C.: Partial Differential Equations, (American Math Society, 2010). · Zbl 1194.35001
[13] Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions (CRC Press, 1992). · Zbl 0804.28001
[14] Fukushima M., Sato K., Taniguchi S.: On the closable part of pre-Dirichlet forms and the fine support of the underlying measures. Osaka J. Math. 28, 517-535 (1991) · Zbl 0756.60071
[15] Giachetti D., Porzio M.M.: Existence results for some non uniformly elliptic equations with irregular data. J. Math. Anal. Appl. 257, 100-130 (2001) · Zbl 0999.35027 · doi:10.1006/jmaa.2000.7324
[16] Giachetti D., Porzio M.M.: Elliptic equations with degenerate coercivity: gradient regularity, Acta Mathematica Sinica, Jan., (2003), Vol. 19, N. 1, 1-11. · Zbl 1160.35364
[17] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations, Vol. I (Springer, 1998). · Zbl 0914.49001
[18] Herrero M.A., Pierre M.: The cauchy problem for \[{{u_t = \Delta u^m}}\] ut=Δum when 0 < m < 1, Trans. Amer. Math. Soc. 291 (1985), 145-158. · Zbl 0583.35052
[19] Pierre M.: Nonlinear Fast Diffusion with Measures as Data. In: Nonlinear Parabolic Equations: Qualitative Properties of Solutions, Rome, 1985 (Pitman Res. Notes Math. Ser. 149, Longman 1987, 179-188). · Zbl 0659.35052
[20] Porzio M.M.: On decay estimates. J. Evol. Equations 9(3), 561-591 (2009) · Zbl 1239.35023 · doi:10.1007/s00028-009-0024-8
[21] Porzio M.M.: Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems. Nonlinear Analysis TMA 74, 5359-5382 (2011) · Zbl 1222.35110 · doi:10.1016/j.na.2011.05.020
[22] Porzio M.M., Pozio M.A.: Parabolic Equations with Non-Linear, Degenerate and Space-Time Dependent Operators. J. Evol. Equations 8, 31-70 (2008) · Zbl 1149.35053 · doi:10.1007/s00028-007-0317-8
[23] Porzio M.M., Smarrazzo F.: Radon Measure-Valued Solutions for some quasilinear degenerate elliptic equations, to appear on Annali di Matematica Pura ed Applicata · Zbl 1315.35110
[24] Porzio M.M., Smarrazzo F., Tesei A.: Radon measure-valued solutions for a class of quasilinear parabolic equations, Archive For Rational Mechanics and Analysis, Volume 210, Issue 3 (2013), 713-772. · Zbl 1288.35305
[25] Porzio M.M., Smarrazzo F., Tesei A.: Radon measure-valued solutions of nonlinear strongly degenerate parabolic equations, Calculus of Variations and PDE’s 51 (2014), 401-437. · Zbl 1323.35061
[26] Porzio M.M., Smarrazzo F., Tesei A.: Radon Measure-Valued solutions of nonlinear mildly degenerate parabolic equations, in preparation. · Zbl 1323.35061
[27] Simon J.: Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl. 146 (1987), 65-96. · Zbl 0629.46031
[28] Vazquez J.L.: Smoothing and decay estimates for nonlinear diffusion equations, Oxford University press 2006. · Zbl 1113.35004
[29] Vazquez J.L.: Measure-valued solutions and phenomenon of blow-down in logarithmic diffusion, J. Math. Anal. Appl. 352 (2009) 515-547). · Zbl 1197.35153
[30] Vazquez J.L.: The Porous medium equation. Mathematical theory, Oxford Mathematical Monographs, Oxford, 2007. · Zbl 1107.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.