×

Time regularity and long-time behavior of parabolic \(p\)-Laplace equations on infinite graphs. (English) Zbl 1323.39005

Summary: We consider the so-called discrete \(p\)-Laplacian, a nonlinear difference operator that acts on functions defined on the nodes of a possibly infinite graph. We study the corresponding Cauchy problem and identify the generator of the associated nonlinear semigroups. We prove higher order time regularity of the solutions. We investigate the long-time behavior of the solutions and discuss in particular finite extinction time and conservation of mass. Namely, on one hand, for small \(p\) if an infinite graph satisfies some isoperimetric inequality, then the solution to the parabolic \(p\)-Laplace equation vanishes in finite time; on the other hand, for large \(p\), these parabolic \(p\)-Laplace equations always enjoy conservation of mass.

MSC:

39A12 Discrete version of topics in analysis
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
39A10 Additive difference equations
47H20 Semigroups of nonlinear operators
05C63 Infinite graphs

References:

[1] Angenent, S. B., Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh Sect. A, 115, 91-107 (1990) · Zbl 0723.34047
[2] Bamberger, A., Etude d’une équation doublement non linéaire, J. Funct. Anal., 24, 148-155 (1977) · Zbl 0345.35059
[3] Barthélemy, L., Invariance d’un convexe fermé par un semi-groupe associé à une forme non-linéaire, Abstr. Appl. Anal., 1, 237-262 (1996) · Zbl 0945.47041
[4] Burago, D.; Ivanov, S.; Kurylev, Y., A graph discretization of the Laplace-Beltrami operator, J. Spectr. Theory, 4, 675-714 (2014) · Zbl 1327.58029
[5] Bereanu, C.; Jebelean, P.; Şerban, C., Periodic and Neumann problems for discrete \(p(\cdot)\)-Laplacian, J. Math. Anal. Appl., 399, 75-87 (2013) · Zbl 1270.35243
[6] Brézis, H., Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert (1973), North-Holland: North-Holland Amsterdam · Zbl 0252.47055
[7] Chung, F. R.K., Spectral Graph Theory, CBMS Reg. Conf. Ser. Math., vol. 92 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0867.05046
[8] DiBenedetto, E.; Gianazza, U.; Vespri, V., Harnack’s Inequality for Degenerate and Singular Equations, Monogr. Math. (2012), Springer-Verlag: Springer-Verlag New York
[9] DiBenedetto, E., Degenerate Parabolic Equations, Universitext (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0794.35090
[10] Diaz, I.; Herrero, M. A., Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 89, 249-258 (1981) · Zbl 0478.35083
[11] DiBenedetto, E.; Urbano, J. M.; Vespri, V., Semigroups and evolution equations: functional calculus, regularity and kernel estimates, (Dafermos, C. M.; Feireisl, E., Handbook of Differential Equations: Evolutionary Equations - vol. 1 (2004), North-Holland: North-Holland Amsterdam) · Zbl 1082.35001
[12] Haeseler, S.; Keller, M.; Lenz, D.; Wojciechowski, R., Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectr. Theory, 2, 397-432 (2012) · Zbl 1287.47023
[13] Herrero, M. A.; Vazquez, J. L., Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse, 3, 113-127 (1981) · Zbl 0498.35013
[14] Iannizzotto, A.; Tersian, S. A., Multiple homoclinic solutions for the discrete \(p\)-Laplacian via critical point theory, J. Math. Anal. Appl., 403, 173-182 (2013) · Zbl 1282.39003
[15] Jorgensen, P. E.T., Essential self-adjointness of the graph-Laplacian, J. Math. Phys., 49, 073510 (2008) · Zbl 1152.81496
[16] Kirchhoff, G., Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige, Ann. Phys., 140, 497-514 (1845)
[17] Keller, M.; Lenz, D., Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math., 666, 189-223 (2012) · Zbl 1252.47090
[18] Lee, Y.-S.; Chung, S.-Y., Extinction and positivity of solutions of the \(p\)-Laplacian evolution equation on networks, J. Math. Anal. Appl., 386, 581-592 (2012) · Zbl 1235.35041
[19] Lions, J.-L., Equations Différentielles Opérationnelles et Problémes aux Limites (1961), Springer-Verlag: Springer-Verlag Berlin · Zbl 0098.31101
[20] Mugnolo, D.; Nicaise, S., Diffusion processes on an interval under linear moment conditions, Semigroup Forum, 88, 479-511 (2013) · Zbl 1295.35244
[21] Mugnolo, D., Parabolic theory of the discrete \(p\)-Laplace operator, Nonlinear Anal., 87, 33-60 (2013) · Zbl 1285.39004
[22] Mugnolo, D., Semigroup Methods for Evolution Equations on Networks, Underst. Complex Syst. (2014), Springer-Verlag: Springer-Verlag Berlin · Zbl 1306.47001
[23] Nakamura, T.; Yamasaki, M., Generalized extremal length of an infinite network, Hiroshima Math. J., 6, 95-111 (1976) · Zbl 0324.31004
[24] Ouhabaz, E. M., Invariance of closed convex sets and domination criteria for semigroups, Potential Anal., 5, 611-625 (1996) · Zbl 0868.47029
[25] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44 (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[26] Prüss, J., Maximal regularity for evolution equations in \(L_p\)-spaces, Conf. Semin. Mat. Univ. Bari, 285, 123-161 (2002)
[27] Takeuchi, H., Stability and Liouville theorems of \(p\)-harmonic maps, Jpn. J. Math., 17, 317-332 (1991) · Zbl 0754.58009
[28] Torki-Hamza, N., Essential self-adjointness for combinatorial Schrödinger operators I - metrically complete graphs, Confluentes Math., 2, 333-350 (2010) · Zbl 1203.05109
[29] Vázquez, J. L., Smoothing and Decay Estimates for Nonlinear Diffusion Equations - Equations of Porous Medium Type, Oxford Lecture Ser. Math. Appl., vol. 33 (2006), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 1113.35004
[30] Vázquez, J. L., The Porous Medium Equation: Mathematical Theory, Oxford Math. Monogr. (2007), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 1107.35003
[31] Vázquez, J. L., Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc. (JEMS), 16, 769-803 (2014) · Zbl 1297.35279
[32] Woess, W., Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138 (2000), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0951.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.