×

On confidence intervals for semiparametric expectile regression. (English) Zbl 1322.62136

Summary: In regression scenarios there is a growing demand for information on the conditional distribution of the response beyond the mean. In this scenario quantile regression is an established method of tail analysis. It is well understood in terms of asymptotic properties and estimation quality. Another way to look at the tail of a distribution is via expectiles. They provide a valuable alternative since they come with a combination of preferable attributes. The easy weighted least squares estimation of expectiles and the quadratic penalties often used in flexible regression models are natural partners. Also, in a similar way as quantiles can be seen as a generalisation of median regression, expectiles offer a generalisation of mean regression. In addition to regression estimates, confidence intervals are essential for interpretational purposes and to assess the variability of the estimate, but there is a lack of knowledge regarding the asymptotic properties of a semiparametric expectile regression estimate. Therefore confidence intervals for expectiles based on an asymptotic normal distribution are introduced. Their properties are investigated by a simulation study and compared to a boostrap-based gold standard method. Finally the introduced confidence intervals help to evaluate a geoadditive expectile regression model on childhood malnutrition data from India.

MSC:

62G08 Nonparametric regression and quantile regression
62G15 Nonparametric tolerance and confidence regions
62-07 Data analysis (statistics) (MSC2010)
62P10 Applications of statistics to biology and medical sciences; meta analysis

References:

[1] Breckling, J., Chambers, R.: M-quantiles. Biometrika 75, 761–771 (1988) · Zbl 0653.62024 · doi:10.1093/biomet/75.4.761
[2] Buchinsky, M.: Recent advances in quantile regression models: a practical guideline for empirical research. J. Hum. Resour. 33, 88–126 (1998) · doi:10.2307/146316
[3] Efron, B.: Regression percentiles using asymmetric squared error loss. Stat. Sin. 1, 93–125 (1991) · Zbl 0822.62054
[4] Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap, 1st edn. Chapman and Hall, New York (1993) · Zbl 0835.62038
[5] Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11, 89–121 (1996) · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[6] Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression: a Bayesian perspective. Stat. Sin. 14, 731–761 (2004) · Zbl 1073.62025
[7] Fenske, N., Kneib, T., Hothorn, T.: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J. Am. Stat. Assoc. 106(494), 494–510 (2011) · Zbl 1232.62146 · doi:10.1198/jasa.2011.ap09272
[8] Jones, M.: Expectiles and m-quantiles are quantiles. Stat. Probab. Lett. 20(2), 149–153 (1994) · Zbl 0801.62012 · doi:10.1016/0167-7152(94)90031-0
[9] Kammann, E.E., Wand, M.P.: Geoadditive models. Appl. Stat. 52, 1–18 (2003) · Zbl 1111.62346
[10] Kocherginsky, M., He, X., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14, 41–55 (2005) · doi:10.1198/106186005X27563
[11] Koenker, R.: Quantile Regression. Cambridge University Press, New York (2005) · Zbl 1111.62037
[12] Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978) · Zbl 0373.62038 · doi:10.2307/1913643
[13] Meinshausen, N., Bühlmann, P.: Stability selection. J. R. Stat. Soc., Ser. B 72(4) (2010, in press), with discussion. doi: 10.1111/j.1467-9868.2010.00740.x · Zbl 1113.62082
[14] Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica 55, 819–847 (1987) · Zbl 0625.62047 · doi:10.2307/1911031
[15] R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010). http://www.R-project.org , ISBN 3-900051-07-0
[16] Rigby, R., Stasinopoulos, D.: Generalized additive models for location, scale and shape. Appl. Stat. 54, 507–554 (2005) · Zbl 1490.62201
[17] Rue, H., Held, L.: Gaussian Markov Random Fields. Chapman & Hall/CRC, Boca Raton (2005) · Zbl 1093.60003
[18] Schall, R.: Estimation in generalized linear models with random effects. Biometrika 78, 719–727 (1991) · Zbl 0850.62561 · doi:10.1093/biomet/78.4.719
[19] Schnabel, S., Eilers, P.: Optimal expectile smoothing. Comput. Stat. Data Anal. 53, 4168–4177 (2009) · Zbl 1453.62192 · doi:10.1016/j.csda.2009.05.002
[20] Sobotka, F., Kneib, T.: Geoadditive expectile regression. Comput. Stat. Data Anal. (2010). doi: 10.1016/j.csda.2010.11.015 · Zbl 1241.62058
[21] Sobotka, F., Schnabel, S., Schulze Waltrup, L.: expectreg: Expectile and Quantile Regression. http://CRAN.R-project.org/package=expectreg , r package version 0.26 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.