×

Rigidity theorems for hypersurfaces with constant mean curvature. (English) Zbl 1319.53065

In this paper, several rigidity results for hypersurfaces with constant mean curvature in space forms are given, focusing in the case of the sphere \(\mathbb{S}^{n+1}(1)\). Techniques are based on H. Alencar and M. P. do Carmo [Proc. Am. Math. Soc. 120, No. 4, 1223–1229 (1994; Zbl 0802.53017)]. A key role is played by the umbilicity operator \(\phi:=HI-A\), where \(H\) is the constant mean curvature and \(A\) is the shape operator.
Given a hypersurface in \(\mathbb{S}^{n+1}(1)\) with constant mean curvature \(H\), assuming the upper bound \(|\phi|^2\leq B_{H,k}\), where \(B_{H,k}\) is the square of the positive root of the polynomial \[ p_{H,k}(x)=x^2+{{n(n-2k)}\over{\sqrt{nk(n-k)}}}\,Hx-n(H^2+1), \] and \(\text{tr}(\phi^3)\leq C_{n,k}|\phi|^3\), where \(C_{n,k}=(n-2k)/\sqrt{nk(n-k)}\), a first rigidity result is proven in Theorem 1.2: Either the hypersurface is totally umbilical or a generalized Clifford torus with constant mean curvature, i.e., a product of spheres.
Assuming an upper bound on \(|A|^2\) and a lower bound on \(\text{tr}(A^3)\), a second rigidity result in \(\mathbb{S}^{n+1}(1)\) is proven in Theorem 1.3. Theorem 1.2 is generalized to space forms in Theorem 1.4.
The main tools in the proofs are a Simons-type formula for the Laplacian of \(|\phi|^2\) (Lemma 2.1) and Lemma 2.2 related to Okamura’s inequality.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Citations:

Zbl 0802.53017
Full Text: DOI

References:

[1] H. Alencar and M. do Carmo. Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc., 120 (1994), 1223-1229. · Zbl 0802.53017 · doi:10.1090/S0002-9939-1994-1172943-2
[2] L.J. Alías and S.C. García-Martínez. On the scalar curvature of constant mean curvature hypersurfaces in space forms. J. Math. Anal. Appl., 363 (2010), 579-587. · Zbl 1182.53052 · doi:10.1016/j.jmaa.2009.09.045
[3] S.Y. Cheng and S.T. Yau. Hypersurfaces with constant scalar curvature. Math. Ann., 225 (1977), 195-204. · Zbl 0349.53041 · doi:10.1007/BF01425237
[4] Chern, S. S.; Carmo, M.; Kobayashi, S.; Browder, F. (ed.), Minimal submanifolds of a sphere with second fundamental formof constant length, 59-75 (1970), Berlin · Zbl 0216.44001
[5] B. Lawson. Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2), 89 (1969), 187-197. · Zbl 0174.24901 · doi:10.2307/1970816
[6] K. Nomizu and B. Smyth. A formula of Simons’ type and hypersurfaces. J. Diff. Geom., 3 (1969), 367-377. · Zbl 0196.25103
[7] M. Okumura. Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J.Math., 96 (1974), 207-213. · Zbl 0302.53028 · doi:10.2307/2373587
[8] H. Omori. Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan, 19 (1967), 205-213. · Zbl 0154.21501 · doi:10.2969/jmsj/01920205
[9] W. Santos. Submanifoldswith parallelmean curvature vector in spheres. An.Acad. Bras. Cienc., 64 (1992), 215-219 · Zbl 0802.53016
[10] J. Simons. Minimal varieties in riemannian manifolds. Ann. of Math., 88 (1968), 62-105. · Zbl 0181.49702 · doi:10.2307/1970556
[11] Zh.H. Hou. Hypersurfaces in a sphere with constant mean curvature. Proc. Amer. Math. Soc., 125 (1997), 1193-1196. · Zbl 0873.53040 · doi:10.1090/S0002-9939-97-03668-X
[12] O. Palmas. Complete rotation hypersurfaces with Hk constant in space forms. Bol. Soc. Bras. Mat., 30(2) (1999), 139-161. · Zbl 1058.53044 · doi:10.1007/BF01235866
[13] H.W. Xu and L. Tian. A New Pinching Theorem for Closed Hypersurfaces with Constant Mean Curvature in Sn+1. Asian J. Math., 15 (2011), 611-630. · Zbl 1243.53104 · doi:10.4310/AJM.2011.v15.n4.a4
[14] S.T. Yau. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl.Math., 28 (1975), 201-228. · Zbl 0291.31002 · doi:10.1002/cpa.3160280203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.