×

The spectral theory of the Yano rough Laplacian with some of its applications. (English) Zbl 1317.53058

Summary: J. H. Sampson has defined the Laplacian \(\triangle_{\mathrm{sym}}\) acting on the space of symmetric covariant tensors on Riemannian manifolds. This operator is an analogue of the well-known Hodge-de Rham Laplacian \(\triangle\) which acts on the space of skew-symmetric covariant tensors on Riemannian manifolds. In the present paper, we perform properties analysis of Sampson’s operator which acts on one-forms. We show that the Sampson operator is the Yano rough Laplacian. We also find the biggest lower bounds of spectra of the Yano and Hodge-de Rham operators and obtain estimates of their multiplicities for the space of one-forms on compact Riemannian manifolds with negative and positive Ricci curvatures, respectively.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C24 Rigidity results
58J40 Pseudodifferential and Fourier integral operators on manifolds
58A14 Hodge theory in global analysis
Full Text: DOI

References:

[1] Agricola, L., Friedrich, T., Global analysis. In: Differential Forms in Analysis, Geometry and Physics. American Mathematical Society, Providence (2002) · Zbl 1005.58001
[2] Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987) · Zbl 0613.53001 · doi:10.1007/978-3-540-74311-8
[3] Boucetta, M.: Spectra and symmetric eigentensors of the Lichnerowicz Laplacian on \[S^nSn\]. Osaka J. Math. 46(1), 235-254 (2009) · Zbl 1170.53010
[4] Boucetta, M.: Spectre du Laplacien de Lichnerowicz sur les projectifs complexes. C. R. Acad. Sci. Paris Sér. I Math. 333, 571-576 (2001) · Zbl 1016.58001 · doi:10.1016/S0764-4442(01)02100-0
[5] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando (1984) · Zbl 0551.53001
[6] Dodziuk, J.: \[L^2\] L2 harmonic forms on rotationally symmetric Riemannian manifolds. Proc. Am. Math. Soc. 77(3), 395-400 (1979) · Zbl 0423.58002
[7] Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1949) · Zbl 0041.29403
[8] Erkekoğlu, F., García-Río, E., Kupeli, D.N., Ünal, B.: Characterizing specific Riemannian manifolds by differential equations. Acta. Appl. Math. 76(2), 195-219 (2003) · Zbl 1033.53033 · doi:10.1023/A:1022987819448
[9] Erkekoğlu, F., Kupeli, D.N., Ünal, B.: Some results related to the Laplacian on vector fields. Publ. Math. Debr. 69(1-2), 137-154 (2006) · Zbl 1121.53030
[10] Gallot, S.: Sur les variétés à operateur de courbure positif qui ont même première valeur proper du \[p\] p-spectre que la sphére. C. R. Acad. Sci. Paris 227, A457-A459 (1973) · Zbl 0264.53020
[11] Garcia-Río, E., Kupeli, D.N., Ünal, B.: On differential equation characterizing Euclidean spheres. J. Differ. Equ. 194, 287-299 (2003) · Zbl 1058.53027 · doi:10.1016/S0022-0396(03)00173-6
[12] Mikeš, J., Stepanova, E.: A five-dimensional Riemannian manifold with an irreducible \[SO(3)\] SO(3)-structure as a model of abstract statistical manifold. Ann. Global Anal. Geom. 45(2), 111-128 (2014) · Zbl 1292.53025 · doi:10.1007/s10455-013-9390-0
[13] Perrone, D.: On the minimal eigenvalue of the Laplacian operator for \[p\] p-forms in conformally flat Riemannian manifolds. Proc. Am. Math. Soc. 86(1), 103-108 (1982) · Zbl 0492.53032
[14] Sampson, J.H.: On a theorem of Chern. Trans. AMS 177, 141-153 (1973) · Zbl 0249.53018 · doi:10.1090/S0002-9947-1973-0317221-7
[15] Smith, R.T.: The second variation formula for harmonic mappings. Proc. Am. Math. Soc. 47, 229-236 (1975) · Zbl 0303.58008 · doi:10.1090/S0002-9939-1975-0375386-2
[16] Stepanov, S.E., Shandra, I.G.: Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24(3), 291-299 (2003) · Zbl 1035.53090 · doi:10.1023/A:1024753028255
[17] Stepanov, S., Mikeš, J.: Betti and Tachibana numbers of compact Riemannian manifolds. Differ. Geom. Appl. 31(4), 486-495 (2013) · Zbl 1279.53037 · doi:10.1016/j.difgeo.2013.04.004
[18] Stepanov, S.E., Tsyganok, I.I., Mikeš, J.: From infinitesimal harmonic transformations to Ricci solitons. Math. Bohem. 138(1), 25-36 (2013) · Zbl 1274.53096
[19] Sumitomo, T., Tandai, K.: Killing tensor fields on the standard sphere and spectra of \[SO(n + 1)/(SO(n - 1)\times SO(2))\] SO(n+1)/(SO(n-1)×SO(2)) and \[O(n +1)/O(n - 1)\times O(2)O\](n+1)/O(n-1)×O(2). Osaka J. Math. 20(1), 51-78 (1983) · Zbl 0534.53038
[20] Takahashi, J.: On the gap between the first eigenvalues of the Laplacian on functions and 1-forms. J. Math. Soc. Jpn. 53(2), 307-320 (2001) · Zbl 0984.58018 · doi:10.2969/jmsj/05320307
[21] Tachibana, Sh: On Killing tensors in Riemannian manifolds of positive curvature operator. Tohoku Math. J. 28, 177-184 (1976) · Zbl 0328.53032 · doi:10.2748/tmj/1178240832
[22] Wood, J.C.: Infinitesimal deformations of harmonic maps and morphisms. Int. J. Geom. Methods Mod. Phys. 3(5-6), 933-956 (2006) · Zbl 1116.53038 · doi:10.1142/S0219887806001600
[23] Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970) · Zbl 0213.23801
[24] Yano, K., Nagano, T.: On geodesic vector fields in a compact orientable Riemannian space. Comment. Math. Helv. 35, 55-64 (1961) · Zbl 0100.35904 · doi:10.1007/BF02567005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.