×

Kravchuk polynomials and irreducible representations of the rotation group \(\mathrm{SO}(3)\). (English) Zbl 1312.33050

Summary: We set forth that the Kravchuk polynomials of a discrete variable are actually “encoded” within appropriate finite-dimensional irreducible representations of the group of rotations of three-dimensional space \(\mathrm{SO}(3)\). Hence, discrete irreducible representation spaces of the group \(\mathrm{SO}(3)\) can be naturally interpreted as finite (discrete) versions of the linear quantum harmonic oscillator.

MSC:

33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
39A70 Difference operators
47B39 Linear difference operators
Full Text: DOI

References:

[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[2] Atakishiyev, N.M., Suslov, S.K.: A model of the harmonic oscillator on the lattice. In: Proceedings of the VI All-Union Colloquium Contemporary Group Analysis: Methods and Applications. Izdat. Elm, Baku, pp 17-21 (1989)
[3] Atakishiyev, N.M., Suslov, S.K.: Difference analogs of the harmonic oscillator. Theor. Math. Phys. 85, 1055-1062 (1991) · Zbl 1189.81099 · doi:10.1007/BF01017247
[4] Atakishiyev, N.M., Wolf, K.B.: Approximation on a finite set of points through Kravchuk functions. Revista Mexicana de Física 40, 366-377 (1994) · Zbl 1291.41010
[5] Atakishiyev, N.M., Wolf, K.B.: Fractional Fourier-Kravchuk transform. J. Opt. Soc. Am. A 14, 1467-1477 (1997) · doi:10.1364/JOSAA.14.001467
[6] Atakishiyev, N.M., Jafarov, E.I., Nagiyev, ShM, Wolf, K.B.: Meixner oscillators. Revista Mexicana de Física 44, 235-244 (1998) · Zbl 1291.81128
[7] Atakishiyev, N.M., Vicent, L.E., Wolf, K.B.: Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math. 107, 73-95 (1999) · Zbl 0945.65154 · doi:10.1016/S0377-0427(99)00082-5
[8] Atakishiyev, N.M., Pogosyan, G.S., Wolf, K.B.: Finite models of the oscillator. Phys. Part. Nuclei 36, 247-265 (2005)
[9] Gasper, G., Rahman, M.: Basic Hypergeometric Functions, 2nd edn. Cambridge University Press, Cambridge (2004) · Zbl 1129.33005 · doi:10.1017/CBO9780511526251
[10] Gel’fand, I.M., Minlos, R.A., Shapiro, Ya, Z.: Representations of the rotation and Lorentz groups and their applications. Macmillan, New York (1963) · Zbl 0108.22005
[11] Kalnins, E.G., Miller Jr, W., Post, S.: Wilson polynomials and the generic superintegrable system on the 2-sphere. J. Phys. A Math. Theor. 40, 11525-11538 (2007) · Zbl 1121.37052
[12] Kalnins, E.G., Miller Jr., W., Post, S.: Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials. Symmetry Integr. Geom. Methods Appl. 9, Art. # 057 (2013) · Zbl 1293.33013
[13] Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their \[q\] q-analogues. In: Springer Monographs in Mathematics. Springer, Berlin (2010) · Zbl 1200.33012
[14] Krawtchouk, M.: Sur une généralisation des polynômes d’Hermite. Comptes Rendus de l’Académie des sciences - Series I - Mathématique, Paris 189, 620-622 (1929) · JFM 55.0799.01
[15] Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. In: Non-relativistic Theory, Pergamon Press, Oxford (1991) · Zbl 0178.57901
[16] Malkin, I.A., Man’ko, V.I.: Dynamical Symmetries and Coherent States of Quantum Systems, in Russian. Fizmatgiz, Moscow (1979)
[17] Miller Jr., W., Post, S., Winternitz, P.: Classical and quantum superintegrability with applications. J. Phys. A Math. Theor. 46, Art. # 423001 (2013) · Zbl 1276.81070
[18] Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. In: Springer Series in Computational Physics. Springer, Berlin (1991) · Zbl 0743.33001
[19] Vilenkin, N.Ja., Klimyk, A.U.: Representations of Lie Groups and Special Functions, vol. I. Kluwer Academic Publishers, Dordrecht (1991) · Zbl 0742.22001
[20] Wolf, K.B., Atakishiyev, N.M., Vicent, L.E., Krötzsch, G., Rueda-Paz, J.: Finite optical Hamiltonian systems. In: Rodríguez-Vera, R., Díaz-Uribe, R. (eds.) Proceedings of the 22nd Congress of the International Commission for Optics: Light for the Development of the World, (Puebla, México, August 15-19, 2011), vol. 8011. Proceedings of SPIE, Art.No.801161, pp. 1-8 (2011)
[21] Želobenko, D.P.: Compact Lie Groups and their Representations. American Mathematical Society, Providence (1973) · Zbl 0272.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.