×

Some new versions of fractional boundary value problems with slit-strips conditions. (English) Zbl 1311.34011

Summary: We discuss the existence and uniqueness of solutions for a fractional differential equation of order \(q\in(n-1,n]\) with slit-strips type boundary conditions. The slit-strips type boundary condition states that the sum of the influences due to finite strips of arbitrary lengths is related to the value of the unknown function at an arbitrary position (nonlocal point) in the slit (a part of the boundary off the two strips). The desired results are obtained by applying standard tools of the fixed point theory and are well illustrated with the aid of examples. We also extend our discussion to the cases of arbitrary number of nonlocal points in the slit, the nonlocal multi-substrips conditions and Riemann-Liouville type slit-strips boundary conditions.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] Hurd, RA, Hayashi, Y: Low-frequency scattering by a slit in a conducting plane. Radio Sci. 15, 1171-1178 (1980) · doi:10.1029/RS015i006p01171
[2] Otsuki, T: Diffraction by multiple slits. J. Opt. Soc. Am. A 7, 646-652 (1990) · doi:10.1364/JOSAA.7.000646
[3] Asghar, S, Hayat, T, Ahmad, B: Acoustic diffraction from a slit in an infinite absorbing sheet. Jpn. J. Ind. Appl. Math. 13, 519-532 (1996) · Zbl 0873.76072 · doi:10.1007/BF03167261
[4] Lundqvist, M: Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging. Kungl Tekniska Hogskolan, Stockholm (2003)
[5] Lipshitz, SP, Scott, TC, Salvy, B: On the acoustic impedance of baffled strip radiators. J. Audio Eng. Soc. 43, 573-580 (1995)
[6] Ahmad, B, Hayat, T, Asghar, S: Diffraction of a plane wave by an elastic knife-edge adjacent to a strip. Can. Appl. Math. Q. 9, 303-316 (2001) · Zbl 1049.76059
[7] Mellow, T, Karkkainen, L: On the sound fields of infinitely long strips. J. Acoust. Soc. Am. 130, 153-167 (2011) · doi:10.1121/1.3596474
[8] Lee, DJ, Lee, SJ, Lee, WS, Yu, JW: Diffraction by dielectric-loaded multiple slits in a conducting plane: TM case. Prog. Electromagn. Res. 131, 409-424 (2012) · doi:10.2528/PIER12081311
[9] Kawasaki, M: Exploration of electronic functionalities in metal oxides by combinatorial lattice engineering. Bull. Chem. Soc. Jpn. 86, 1341-1358 (2013) · doi:10.1246/bcsj.20130236
[10] Ozisik, MN: Boundary Value Problems of Heat Conduction. Dover, New York (2002)
[11] Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[12] Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[13] Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) · Zbl 1116.00014
[14] Ahmad, B, Sivasundaram, S: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217, 480-487 (2010) · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080
[15] Baleanu, D, Mustafa, OG: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59, 1835-1841 (2010) · Zbl 1189.34006 · doi:10.1016/j.camwa.2009.08.028
[16] Ahmad, B, Nieto, JJ: Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011, 36 (2011) · Zbl 1275.45004 · doi:10.1186/1687-2770-2011-36
[17] Alsaedi, A, Ntouyas, SK, Ahmad, B: Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multiterm fractional integral boundary conditions. Abstr. Appl. Anal. 2013, Article ID 869837 (2013) · Zbl 1276.26008
[18] Baleanu, D, Mustafa, OG, Agarwal, RP: On Lp \({L}^p\)-solutions for a class of sequential fractional differential equations. Appl. Math. Comput. 218, 2074-2081 (2011) · Zbl 1235.34008 · doi:10.1016/j.amc.2011.07.024
[19] Agarwal, RP, Ahmad, B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62, 1200-1214 (2011) · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001
[20] Bhalekar, S, Daftardar-Gejji, V, Baleanu, D, Magin, R: Fractional Bloch equation with delay. Comput. Math. Appl. 61, 1355-1365 (2011) · Zbl 1217.34123 · doi:10.1016/j.camwa.2010.12.079
[21] Graef, JR, Kong, L, Kong, Q: Application of the mixed monotone operator method to fractional boundary value problems. Fract. Differ. Calc. 2, 554-567 (2011)
[22] Akyildiz, FT, Bellout, H, Vajravelu, K, Van Gorder, RA: Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces. Nonlinear Anal., Real World Appl. 12, 2919-2930 (2011) · Zbl 1231.35155 · doi:10.1016/j.nonrwa.2011.02.017
[23] Ahmad, B, Nieto, JJ: Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 64, 3046-3052 (2012) · Zbl 1268.34006 · doi:10.1016/j.camwa.2012.02.036
[24] Bai, ZB, Sun, W: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 63, 1369-1381 (2012) · Zbl 1247.34006 · doi:10.1016/j.camwa.2011.12.078
[25] Sakthivel, R, Mahmudov, NI, Nieto, JJ: Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput. 218, 10334-10340 (2012) · Zbl 1245.93022 · doi:10.1016/j.amc.2012.03.093
[26] Agarwal, RP, O’Regan, D, Stanek, S: Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 285, 27-41 (2012) · Zbl 1232.26005 · doi:10.1002/mana.201000043
[27] Wang, JR, Zhou, Y, Medved, M: Qualitative analysis for nonlinear fractional differential equations via topological degree method. Topol. Methods Nonlinear Anal. 40, 245-271 (2012) · Zbl 1282.34013
[28] Cabada, A, Wang, G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403-411 (2012) · Zbl 1232.34010 · doi:10.1016/j.jmaa.2011.11.065
[29] Baleanu, D, Rezapour, S, Mohammadi, H: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 371(1990), 20120144 (2013) · Zbl 1342.34009 · doi:10.1098/rsta.2012.0144
[30] Wang, G, Ahmad, B, Zhang, L, Agarwal, RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51-56 (2013) · Zbl 1302.45019 · doi:10.1016/j.cam.2013.02.010
[31] Zhou, WX, Chu, YD, Baleanu, D: Uniqueness and existence of positive solutions for a multi-point boundary value problem of singular fractional differential equations. Adv. Differ. Equ. 2013, 114 (2013) · Zbl 1380.34024 · doi:10.1186/1687-1847-2013-114
[32] Ahmad, B, Ntouyas, SK, Alsaedi, A: A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013, Article ID 320415 (2013) · Zbl 1296.34011
[33] Ahmad, B, Ntouyas, SK: Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2013, 20 (2013) · Zbl 1365.93273 · doi:10.1186/1687-1847-2013-20
[34] Faieghi, M, Kuntanapreeda, S, Delavari, H, Baleanu, D: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72, 301-309 (2013) · Zbl 1268.93121 · doi:10.1007/s11071-012-0714-6
[35] Nieto, JJ, Ouahab, A, Prakash, P: Extremal solutions and relaxation problems for fractional differential inclusions. Abstr. Appl. Anal. 2013, Article ID 292643 (2013) · Zbl 1293.34012 · doi:10.1155/2013/292643
[36] O’Regan, D, Stanek, S: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71, 641-652 (2013) · Zbl 1268.34023 · doi:10.1007/s11071-012-0443-x
[37] Stanek, S: Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation. Cent. Eur. J. Math. 11, 574-593 (2013) · Zbl 1262.34008 · doi:10.2478/s11533-012-0141-4
[38] Wang, JR, Zhou, Y, Wei, W: Fractional sewage treatment models with impulses at variable times. Appl. Anal. 92, 1959-1979 (2013) · Zbl 1279.26021 · doi:10.1080/00036811.2012.715150
[39] Zhai, C, Hao, M: Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems. Bound. Value Probl. 2013, 85 (2013) · Zbl 1300.34024 · doi:10.1186/1687-2770-2013-85
[40] Wang, JR, Zhou, Y, Feckan, M: On the nonlocal Cauchy problem for semilinear fractional order evolution equations. Cent. Eur. J. Math. 12, 911-922 (2014) · Zbl 1296.26035 · doi:10.2478/s11533-013-0381-y
[41] Graef, JR, Kong, L, Wang, M: Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 17, 499-510 (2014) · Zbl 1308.34012 · doi:10.2478/s13540-014-0182-4
[42] Wang, G, Liu, S, Zhang, L: Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions. Abstr. Appl. Anal. 2014, Article ID 916260 (2014) · Zbl 1474.34057
[43] Punzo, F, Terrone, G: On the Cauchy problem for a general fractional porous medium equation with variable density. Nonlinear Anal. 98, 27-47 (2014) · Zbl 1284.35005 · doi:10.1016/j.na.2013.12.007
[44] Liu, X, Liu, Z, Fu, X: Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, 446-458 (2014) · Zbl 1311.49033 · doi:10.1016/j.jmaa.2013.07.032
[45] Chauhan, A, Dabas, J: Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition. Commun. Nonlinear Sci. Numer. Simul. 19, 821-829 (2014) · Zbl 1457.45004 · doi:10.1016/j.cnsns.2013.07.025
[46] Zhai, C, Xu, L: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820-2827 (2014) · Zbl 1510.34025 · doi:10.1016/j.cnsns.2014.01.003
[47] Baleanu, D, Nazemi, SZ, Rezapour, S: Attractivity for a k \(k\)-dimensional system of fractional functional differential equations and global attractivity for a k \(k\)-dimensional system of nonlinear fractional differential equations. J. Inequal. Appl. 2014, 31 (2014) · Zbl 1314.34156 · doi:10.1186/1029-242X-2014-31
[48] Baleanu, D, Nazemi, SZ, Rezapour, S: The existence of solution for a k \(k\)-dimensional system of multiterm fractional integrodifferential equations with antiperiodic boundary value problems. Abstr. Appl. Anal. 2014, Article ID 896871 (2014) · Zbl 1474.34535
[49] Smart, DR: Fixed Point Theorems. Cambridge University Press, Cambridge (1980) · Zbl 0427.47036
[50] Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003) · Zbl 1025.47002 · doi:10.1007/978-0-387-21593-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.