×

Hodge theory and derived categories of cubic fourfolds. (English) Zbl 1309.14014

The question of rationality of smooth cubic fourfolds is a long standing open problem. At the time of writing this review, there are some known examples of cubic fourfolds which are rational but not a single example of a cubic fourfold which is non-rational. The widely shared expectation is that very general cubic fourfolds are non-rational and rational cubic fourfolds all have a \(K3\) surface associated to them in some meaningful way. There are two concrete conjectures making this expectation precise.
The first one is of Hodge theoretic nature. B. Hassett [Compos. Math. 120, No. 1, 1–23 (2000; Zbl 0956.14031)] showed that the cubic fourfolds \(X\) possessing an integral (2,2)-class \(T\in H^{2,2}(X, \mathbb Z)\) together with a Hodge isometry \[ H^2_{\mathrm{prim}}(S,\mathbb Z)(-1)\cong \langle h^2,T\rangle ^\perp\subset H^4(X,\mathbb Z) \] for some \(K3\) surface \(S\), form a countable union of irreducible divisors in the moduli space of cubic fourfolds; here \(H^2_{\mathrm{prim}}(S,\mathbb Z)(-1)\) denotes the Tate twist of the primitive cohomology of the \(K3\) surface and \(h\) is the hyperplane class on \(X\). We refer to this subset of the moduli space as the Hassett locus. In [loc. cit.] it was also shown that many of the cubic fourfolds in the Hassett locus are rational and it was asked weather the Hassett locus coincides with the locus of rational cubic fourfolds; though this was originally formulated as a question, we will refer to this as the Hassett conjecture in the following for simplicity.
The second conjecture, which is due to Kuznetsov, involves derived categories. For every cubic fourfold, there is an exceptional sequence \(\mathcal O_X\), \(\mathcal O_X(1)\), \(\mathcal O_X(2)\) in \(D(X):=D^b(\text{Coh}(X))\). Its right-orthogonal is denoted by \(\mathcal A_X\) so that there is the semi-orthogonal decomposition \[ D(X)=\langle \mathcal A_X, \mathcal O_X, \mathcal O_X(1), \mathcal O_X(2)\rangle. \] In [A. Kuznetsov, Prog. Math. 282, 219–243 (2010; Zbl 1202.14012)] it was conjectured that \(X\) is rational if and only if there is a \(K3\) surface \(S\) together with an equivalence \(\mathcal A_X\cong D(S)\); if the latter is the case, \(\mathcal A_X\) is said to be geometric.
In the paper under review, it is shown that the two conjectures are generically equivalent. The precise statement is the following. Every cubic fourfold with the property that \(\mathcal A_X\) is geometric lies in the Hassett locus. Conversely, every irreducible component of the Hassett locus contains a Zariski open dense subset consisting of cubic fourfolds with the property that \(\mathcal A_X\) is geometric. A very useful outline of the difficult proof is given in Section 1.2 of the introduction.
The authors also provide results on the algebraicity of the isometries \(H^2_{\mathrm{prim}}(S,\mathbb Z)(-1)\cong \langle h^2,T\rangle ^\perp\) for \(X\) contained in the Hassett locus as well as for Hodge isometries \(T(S)(-1)\cong T(X)\) between the transcendental lattices of general projective \(K3\) surfaces and general cubic fourfolds.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14J35 \(4\)-folds
14J10 Families, moduli, classification: algebraic theory
14J28 \(K3\) surfaces and Enriques surfaces

References:

[1] D. Arinkin, J. Block, and T. Pantev, \ast -Quantizations of Fourier-Mukai transforms , Geom. Funct. Anal. 23 (2013), 1403-1482. · Zbl 1328.14024 · doi:10.1007/s00039-013-0233-8
[2] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces , Proc. Sympos. Pure Math. 3 , Amer. Math. Soc., Providence, 1961, 7-38. · Zbl 0108.17705
[3] M. F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic embeddings , Topology 1 (1962), 151-166. · Zbl 0108.36402 · doi:10.1016/0040-9383(65)90023-6
[4] A. Auel, M. Bernardara, M. Bolognesi, and A. Várilly-Alvarado, Cubic fourfolds containing a plane and a quintic del Pezzo surface , Algebraic Geom. 2 (2014), 181-193. · Zbl 1317.14032
[5] W. A. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains , Ann. of Math. (2) 84 (1966), 442-528. · Zbl 0154.08602 · doi:10.2307/1970457
[6] A. Baker, A Concise Introduction to the Theory of Numbers , Cambridge Univ. Press, Cambridge, 1984. · Zbl 0554.10001
[7] M. Ballard, D. Favero, and L. Katzarkov, Orlov spectra: Bounds and gaps , Invent. Math. 189 (2012), 359-430. · Zbl 1266.14013 · doi:10.1007/s00222-011-0367-y
[8] A. Beauville, J.-P. Bourguignon, and M. Demazure, Géométrie des surfaces K3: Modules et périodes , Astérisque 126 , Soc. Math. France, Paris, 1985.
[9] A. Beauville and R. Donagi, La variété des droites d’une hypersurface cubique de dimension 4 , C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 703-706. · Zbl 0602.14041
[10] S. Bloch, Semi-regularity and de Rham cohomology , Invent. Math. 17 (1972), 51-66. · Zbl 0254.14011 · doi:10.1007/BF01390023
[11] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry , Mosc. Math. J. 3 (2003), 1-36, 258. · Zbl 1135.18302
[12] R.-O. Buchweitz and H. Flenner, The global decomposition theorem for Hochschild (co-)homology of singular spaces via the Atiyah-Chern character , Adv. Math. 217 (2008), 243-281. · Zbl 1144.14015 · doi:10.1016/j.aim.2007.06.013
[13] D. Calaque, C. Rossi, and M. Van den Bergh, Căldăraru’s conjecture and Tsygan’s formality , Ann. of Math. (2) 176 (2012), 865-923. · Zbl 1252.18035 · doi:10.4007/annals.2012.176.2.4
[14] D. Calaque and M. van den Bergh, Hochschild cohomology and Atiyah classes , Adv. Math. 224 (2010), 1839-1889. · Zbl 1197.14017 · doi:10.1016/j.aim.2010.01.012
[15] A. Căldăraru, The Mukai pairing, I: The Hochschild structure , preprint, .
[16] A. Căldăraru, The Mukai pairing, II: The Hochschild-Kostant-Rosenberg isomorphism , Adv. Math. 194 (2005), 34-66. · Zbl 1098.14011 · doi:10.1016/j.aim.2004.05.012
[17] C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold , Ann. of Math. (2) 95 (1972), 281-356. · Zbl 0214.48302 · doi:10.2307/1970801
[18] D. A. Cox, Primes of the Form \(x^{2}+ny^{2}\) , Wiley, New York, 1989. · Zbl 0701.11001
[19] B. Hassett, Some rational cubic fourfolds , J. Algebraic Geom. 8 (1999), 103-114. · Zbl 0961.14029
[20] B. Hassett, Special cubic fourfolds , Compositio Math. 120 (2000), 1-23. · Zbl 0956.14031 · doi:10.1023/A:1001706324425
[21] D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry , Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2006. · Zbl 1095.14002
[22] D. Huybrechts, Complex and real multiplication for K3 surfaces , lecture notes, GAeL-Géométrie Algébrique en Liberté, Aranjuez, Spain, 2008, .
[23] D. Huybrechts, Lectures on K3 surfaces , preprint, (accessed 28 April 2014). · Zbl 1291.14058
[24] D. Huybrechts, E. Macrì, and P. Stellari, Derived equivalences of K3 surfaces and orientation , Duke Math. J. 149 (2009), 461-507. · Zbl 1237.18008 · doi:10.1215/00127094-2009-043
[25] D. Huybrechts and R. P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes , Math. Ann. 346 (2010), 545-569. · Zbl 1186.14014 · doi:10.1007/s00208-009-0397-6
[26] Y. Kawamata, Unobstructed deformations: A remark on a paper of Z. Ran, “Deformations of manifolds with torsion or negative canonical bundle,” J. Algebraic Geom. 1 (1992), 183-190. · Zbl 0818.14004
[27] A. Kuznetsov, “Derived categories of cubic fourfolds” in Cohomological and Geometric Approaches to Rationality Problems , Progr. Math. 282 , Birkhäuser, Boston, 2010, 219-243. · Zbl 1202.14012 · doi:10.1007/978-0-8176-4934-0_9
[28] R. Laza, The moduli space of cubic fourfolds via the period map , Ann. of Math. (2) 172 (2010), 673-711. · Zbl 1201.14026 · doi:10.4007/annals.2010.172.673
[29] M. Lieblich, Moduli of complexes on a proper morphism , J. Algebraic Geom. 15 (2006), 175-206. · Zbl 1085.14015 · doi:10.1090/S1056-3911-05-00418-2
[30] E. Looijenga, The period map for cubic fourfolds , Invent. Math. 177 (2009), 213-233. · Zbl 1177.32010 · doi:10.1007/s00222-009-0178-6
[31] E. Macrì and P. Stellari, Infinitesimal derived Torelli theorem for K3 surfaces , with appendix by S. Mehrotra, Int. Math. Res. Not. IMRN 2009 , no. 17, 3190-3220. · Zbl 1174.14018 · doi:10.1093/imrn/rnp049
[32] E. Macrì and P. Stellari, Fano varieties of cubic fourfolds containing a plane , Math. Ann. 354 (2012), 1147-1176. · Zbl 1266.18016 · doi:10.1007/s00208-011-0776-7
[33] H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces , J. Math. Kyoto Univ. 3 (1963/1964), 347-361. · Zbl 0141.37401
[34] S. Mukai, “On the moduli space of bundles on \(K3\) surfaces, I” in Vector Bundles on Algebraic Varieties (Bombay, 1984) , Tata Inst. Fund. Res. Stud. Math. 11 , Tata Inst. Fund. Res., Mumbai, 1987, 341-413. · Zbl 0674.14023
[35] V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications , Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177, 238. · Zbl 0408.10011
[36] Z. Ran, Deformations of manifolds with torsion or negative canonical bundle , J. Algebraic Geom. 1 (1992), 279-291. · Zbl 0818.14003
[37] M. Rapoport, Complément à l’article de P. Deligne “La conjecture de Weil pour les surfaces K3,” Invent. Math. 15 (1972), 227-236. · Zbl 0228.14014 · doi:10.1007/BF01404127
[38] Y. Toda, Deformations and Fourier-Mukai transforms , J. Differential Geom. 81 (2009), 197-224. · Zbl 1165.14019
[39] C. Voisin, Théorème de Torelli pour les cubiques de \(\mathbb{P}^{5}\) , Invent. Math. 86 (1986), 577-601. · Zbl 0622.14009 · doi:10.1007/BF01389270
[40] C. Voisin, Hodge Theory and Complex Algebraic Geometry, I , Cambridge Stud. Adv. Math. 76 , Cambridge Univ. Press, Cambridge, 2002. · Zbl 1005.14002
[41] C. Voisin, Some aspects of the Hodge conjecture , Jpn. J. Math. 2 (2007), 261-296. · Zbl 1159.14005 · doi:10.1007/s11537-007-0639-x
[42] S. Zucker, The Hodge conjecture for cubic fourfolds , Compositio Math. 34 (1977), 199-209. · Zbl 0347.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.