×

Feynman graphs. (English) Zbl 1308.81142

Schneider, Carsten (ed.) et al., Computer algebra in quantum field theory. Integration, summation and special functions. Wien: Springer (ISBN 978-3-7091-1615-9/hbk; 978-1-4614-8523-0/ebook). Texts and Monographs in Symbolic Computation, 381-406 (2013).
Summary: In these lectures, I discuss Feynman graphs and the associated Feynman integrals. Of particular interest are the classes functions, which appear in the evaluation of Feynman integrals. The most prominent class of functions is given by multiple polylogarithms. The algebraic properties of multiple polylogarithms are reviewed in the second part of these lectures. The final part of these lectures is devoted to Feynman integrals, which cannot be expressed in terms of multiple polylogarithms. Methods from algebraic geometry provide tools to tackle these integrals.
For the entire collection see [Zbl 1276.81004].

MSC:

81T18 Feynman diagrams
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry

References:

[1] Ablinger, J.; Blümlein, J.; Schneider, C., Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys., 52, 102301 (2011) · Zbl 1272.81127 · doi:10.1063/1.3629472
[2] Argeri, M.; Mastrolia, P., Feynman diagrams and differential equations, Int. J. Mod. Phys., A22, 4375-4436 (2007) · Zbl 1141.81325 · doi:10.1142/S0217751X07037147
[3] Bierenbaum, I.; Weinzierl, S., The massless two-loop two-point function, Eur. Phys. J., C32, 67-78 (2003) · Zbl 1099.81534 · doi:10.1140/epjc/s2003-01389-7
[4] Bloch, S.; Esnault, H.; Kreimer, D., On motives associated to graph polynomials, Commun. Math. Phys., 267, 181 (2006) · Zbl 1109.81059 · doi:10.1007/s00220-006-0040-2
[5] Blümlein, J., Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Commun., 159, 19-54 (2004) · Zbl 1097.11063 · doi:10.1016/j.cpc.2003.12.004
[6] Blümlein, J.; Broadhurst, D. J.; Vermaseren, J. A.M., The multiple zeta value data mine, Comput. Phys. Commun., 181, 582 (2010) · Zbl 1221.11183 · doi:10.1016/j.cpc.2009.11.007
[7] Blümlein, J.; Kurth, S., Harmonic sums and mellin transforms up to two-loop order, Phys. Rev., D60, 014018 (1999)
[8] Bogner, C.; Weinzierl, S., Feynman graph polynomials, Int. J. Mod. Phys., A25, 2585-2618 (2010) · Zbl 1193.81072 · doi:10.1142/S0217751X10049438
[9] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; Lisonek, P., Special values of multiple polylogarithms, Trans. Am. Math. Soc., 353, 3, 907 (2001) · Zbl 1002.11093 · doi:10.1090/S0002-9947-00-02616-7
[10] Broadhurst, D. J.; Fleischer, J.; Tarasov, O., Two loop two point functions with masses: asymptotic expansions and Taylor series, in any dimension, Z. Phys., C60, 287-302 (1993)
[11] Brown, F., The massless higher-loop two-point function, Commun. Math. Phys., 287, 925-958 (2008) · Zbl 1196.81130 · doi:10.1007/s00220-009-0740-5
[12] Brown, F.: On the periods of some Feynman integrals. arXiv:0910.0114 [math.AG] (2009)
[13] Chaiken, S., A combinatorial proof of the all minors matrix tree theorem, SIAM J. Algebr. Discret. Methods, 3, 319-329 (1982) · Zbl 0495.05018 · doi:10.1137/0603033
[14] Chen, W. K., Applied Graph Theory (1982), North Holland, Amsterdam: Graphs and Electrical Networks, North Holland, Amsterdam
[15] Dodgson, C. L., Condensation of determinants, Proc. R. Soc. Lond., 15, 150-155 (1866) · doi:10.1098/rspl.1866.0037
[16] Ecalle, J., Ari/gari, la dimorphie et l’arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres de Bordeaux, 15, 411 (2003) · Zbl 1094.11032 · doi:10.5802/jtnb.410
[17] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F., Higher Transcendental Functions (1953), New York: McGraw Hill, New York · Zbl 0052.29502
[18] Euler, L., Meditationes circa singulare serierum genus, Novi Comment. Acad. Sci. Petropol., 20, 140 (1775)
[19] Gehrmann, T.; Remiddi, E., Differential equations for two-loop four-point functions, Nucl. Phys., B580, 485-518 (2000) · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[20] Gehrmann, T.; Remiddi, E., Two-loop master integrals for gamma* → 3 jets: the non- planar topologies, Nucl. Phys., B601, 287-317 (2001) · doi:10.1016/S0550-3213(01)00074-8
[21] Gehrmann, T.; Remiddi, E., Two-loop master integrals for gamma* → 3 jets: the planar topologies, Nucl. Phys., B601, 248-286 (2001) · doi:10.1016/S0550-3213(01)00057-8
[22] Goncharov, A. B., Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 497 (1998) · Zbl 0961.11040 · doi:10.4310/MRL.1998.v5.n4.a7
[23] Goncharov, A.B.: Multiple polylogarithms and mixed Tate motives. math.AG/0103059 (2001)
[24] Guo, L.; Keigher, W., Baxter algebras and shuffle products, Adv. Math., 150, 117 (2000) · Zbl 0947.16013 · doi:10.1006/aima.1999.1858
[25] Hoffman, M. E., Quasi-shuffle products. J. Algebr. Comb., 11, 49 (2000) · Zbl 0959.16021 · doi:10.1023/A:1008791603281
[26] Kotikov, A. V., Differential equation method: the calculation of n point Feynman diagrams, Phys. Lett., B267, 123-127 (1991) · doi:10.1016/0370-2693(91)90536-Y
[27] Kotikov, A. V., Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett., B254, 158-164 (1991) · doi:10.1016/0370-2693(91)90413-K
[28] Laporta, S.; Remiddi, E., Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys., B704, 349-386 (2005) · Zbl 1119.81356 · doi:10.1016/j.nuclphysb.2004.10.044
[29] Moch, S.; Uwer, P., Xsummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun., 174, 759-770 (2006) · Zbl 1196.68332 · doi:10.1016/j.cpc.2005.12.014
[30] Moch, S.; Uwer, P.; Weinzierl, S., Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals, J. Math. Phys., 43, 3363-3386 (2002) · Zbl 1060.33007 · doi:10.1063/1.1471366
[31] Moon, J., Some determinant expansions and the matrix-tree theorem, Discret. Math., 124, 163-171 (1994) · Zbl 0838.05080 · doi:10.1016/0012-365X(92)00059-Z
[32] Müller-Stach, S.; Weinzierl, S.; Zayadeh, R., A second-order differential equation for the two-loop sunrise graph with arbitrary masses, Commun. Number Theory Phys., 6, 203-222 (2012) · Zbl 1275.81069 · doi:10.4310/CNTP.2012.v6.n1.a5
[33] Müller-Stach, S., Weinzierl, S., Zayadeh, R.: Picard-Fuchs equations for Feynman integrals. arXiv:1212.4389 [hep-ph] (2012) · Zbl 1285.81029
[34] Nielsen, N., Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina (Halle), 90, 123 (1909) · JFM 40.0478.01
[35] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim., A110, 1435-1452 (1997)
[36] Remiddi, E.; Vermaseren, J. A.M., Harmonic polylogarithms. Int. J. Mod. Phys., A15, 725 (2000) · Zbl 0951.33003 · doi:10.1142/S0217751X00000367
[37] Reutenauer, C., Free Lie Algebras (1993), Oxford: Clarendon Press, Oxford · Zbl 0798.17001
[38] Stanley, R. P., Spanning trees and a conjecture of Kontsevich, Ann. Comb., 2, 351-363 (1998) · Zbl 0927.05087 · doi:10.1007/BF01608530
[39] Sweedler, M., Hopf Algebras (1969), New York: Benjamin, New York · Zbl 0194.32901
[40] Tarasov, O. V., Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev., D54, 6479-6490 (1996) · Zbl 0925.81121
[41] Tarasov, O. V., Generalized recurrence relations for two-loop propagator integrals with arbitrary masses, Nucl. Phys., B502, 455-482 (1997) · doi:10.1016/S0550-3213(97)00376-3
[42] Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21. Addison-Wesley, Menlo Park (1984) · Zbl 0554.05001
[43] Vermaseren, J. A.M., Harmonic sums, mellin transforms and integrals, Int. J. Mod. Phys., A14, 2037 (1999) · Zbl 0939.65032 · doi:10.1142/S0217751X99001032
[44] Vollinga, J.; Weinzierl, S., Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun., 167, 177 (2005) · Zbl 1196.65045 · doi:10.1016/j.cpc.2004.12.009
[45] Weinzierl, S., Symbolic expansion of transcendental functions, Comput. Phys. Commun., 145, 357-370 (2002) · Zbl 1001.65025 · doi:10.1016/S0010-4655(02)00261-8
[46] Weinzierl, S., Expansion around half-integer values, binomial sums and inverse binomial sums, J. Math. Phys., 45, 2656-2673 (2004) · Zbl 1071.33018 · doi:10.1063/1.1758319
[47] Zagier, D.; Joseph, A., Values of zeta functions and their applications, First European Congress of Mathematics, Paris, 1992 vol. II, 497-512 (1994), Boston: Birkhauser, Boston · Zbl 0822.11001 · doi:10.1007/978-3-0348-9112-7_23
[48] Zeilberger, D., Dodgson’s determinant-evaluation rule proved by two-timing men and women, Electron. J. Comb., 4, R22, 2 (1997) · Zbl 0886.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.