×

On the infimum attained by the reflected fractional Brownian motion. (English) Zbl 1306.60037

Summary: Let \(\{B_{H}(t):t\geq0\}\) be a fractional Brownian motion with Hurst parameter \(H\in \left(\frac {1}{2},1\right)\). For the storage process \(Q_{B_{H}}(t)=\sup _{-\infty \leq s\leq t}\left (B_{H}(t)-B_{H}(s)-c(t-s)\right)\) we show that, for any \(T(u)>0\) such that \(T(u)=o\left(u^{\frac {2H-1}{H}}\right)\), \[ \operatorname{P} \left(\inf_{s\in[0,T(u)]} Q_{B_{H}}(s)>u\right)\sim \operatorname{P}(Q_{B_{H}}(0)>u), \] as \(u\to \infty \). This finding, known in the literature as the strong Piterbarg property, goes in line with previously observed properties of storage processes with self-similar and infinitely divisible input without Gaussian component.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60G70 Extreme value theory; extremal stochastic processes
60F15 Strong limit theorems

References:

[1] Adler, R.J.: An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, volume 12 of Lecture Notes-Monograph Series. IMS (1990) · Zbl 0747.60039
[2] Albin, J., Samorodnitsky, G.: On overload in a storage model, with a self-similar and infinitely divisible input. Ann. Appl. Probab. 14, 820-844 (2004) · Zbl 1047.60034 · doi:10.1214/105051604000000468
[3] Arendarczyk, M., DȨbicki, K., Mandjes, M.: On the Tail Asymptotics of the Area Swept under the Brownian Storage Graph. Bernoulli (2013) · Zbl 1314.60148
[4] Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer (2003) · Zbl 1029.60001
[5] Asmussen, S, Albrecher, H: Ruin Probabilities, 2nd edn. World Scientific Publishing Co. Inc. (2010) · Zbl 1247.91080
[6] Dębicki, K.: Ruin probability for Gaussian integrated processes. Stoch. Process Appl. 98, 151-174 (2002) · Zbl 1059.60047 · doi:10.1016/S0304-4149(01)00143-0
[7] Dębicki, K., Kisowski, P.: Asymptotics of supremum distribution of (a(t),a(t))-locally stationary Gaussian processes. Stoch. Process Appl. 118, 2022-2037 (2008) · Zbl 1151.60325 · doi:10.1016/j.spa.2007.11.010
[8] Dębicki, K., Tabiś, K.: Extremes of time-average stationary Gaussian processes. Stoch. Process Appl. 121, 2049-2063 (2011) · Zbl 1227.60045 · doi:10.1016/j.spa.2011.05.005
[9] Dębicki, K., Kosiński, K.M., Mandjes, M.: On the infimum attained by a reflected Lévy process. Queueing Syst. 70, 23-35 (2012) · Zbl 1247.60127 · doi:10.1007/s11134-011-9257-7
[10] Hashorva, E., Ji, L., Piterbarg, V.I.: On the supremum of γ-reflected processes with fractional Brownian motion as input. Stochastic Process. Appl. (2013). in press · Zbl 1316.60054
[11] Hüsler, J., Piterbarg, V.I.: Extremes of a certain class of Gaussian processes. Stoch. Process Appl. 83, 257-271 (1999) · Zbl 0997.60057 · doi:10.1016/S0304-4149(99)00041-1
[12] Hüsler, J., Piterbarg, V.I.: On the ruin probability for physical fractional brownian motion. Stoch. Process Appl. 113, 315-332 (2004) · Zbl 1070.60036 · doi:10.1016/j.spa.2004.04.004
[13] Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion. Ann. Appl. Probab. 12, 23-68 (2002) · Zbl 1021.60076 · doi:10.1214/aoap/1015961155
[14] Norros, I.: A storage model with selfsimilar input. Queueing Syst. 16, 387-396 (2004) · Zbl 0811.68059 · doi:10.1007/BF01158964
[15] Pickands, J. III.: Asymptotic properties of the maximum in a stationary Gaussian process. Trans. Amer. Math. Soc. 145, 75-86 (1969a) · Zbl 0206.18901
[16] Pickands, J. III.: Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145, 51-73 (1969b) · Zbl 0206.18802 · doi:10.1090/S0002-9947-1969-0250367-X
[17] Piterbarg, V.I.: Asymptotics Methods in the Theory of Gaussian Processes and Fields, volume 148 of Translation of Mathematical Monographs. AMS (1996) · Zbl 1227.60045
[18] Piterbarg, V.I.: Large deviations of a storage process with fractional Brownian motion as input. Extremes 4, 147-164 (2001) · Zbl 1003.60053 · doi:10.1023/A:1013973109998
[19] Piterbarg, V.I., Prisyazhnyuk, V: Asymptotic behavior of the probability of a large excursion for a nonstationary gaussian processes. Theory Probab. Math. Stat., 121-133 (1978) · Zbl 1070.60036
[20] Reich, E.: On the integrodifferential equation of Takacs I. Ann. Math. Stat. 29, 563-570 (1958) · Zbl 0086.33703 · doi:10.1214/aoms/1177706632
[21] Straf, M.L.: Weak convergence of stochastic processes with several parameters. In: Proceedings of the Sixthe Berkeley Symposium in Mathematical Statistics and Probability, vol. 2, pp. 187-221 (1972) · Zbl 0255.60019
[22] Taqqu, M. S., Willinger, W., Sherman, R.: Proof of a fundamental result in self-similar traffic modeling. Comput. Comm. Rev. 27, 5-23 (1997) · doi:10.1145/263876.263879
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.