×

Exponential bases, Paley-Wiener spaces and applications. (English) Zbl 1306.42048

Let \(\Omega \subset {\mathbb R}^d\) \((d\geq 1)\) be a Borel set of finite measure. The Paley-Wiener space \(\mathrm{PW}_{\Omega}({\mathbb R}^d)\) contains all functions \(f\in L^2({\mathbb R}^d)\) whose Fourier transforms are supported in \(\Omega\). For a given countable set \(A\subset {\mathbb R}^d\) and \(\Phi\in\mathrm{PW}_{\Omega}({\mathbb R}^d)\), the authors investigate the connection between the translation basis \(\{\Phi(\cdot -a);\, a \in A\}\) and the exponential basis \(\{e_a;\, a\in A\}\) with \(e_a(x) = \exp(-2\pi i\,\langle x,a\rangle)\) \((x\in \Omega)\). Roughly spoken, it is shown that \(\{\Phi(\cdot -a);\, a \in A\}\) is an orthonormal basis, a Riesz basis, resp. a frame for \(\mathrm{PW}_{\Omega}({\mathbb R}^d)\) if and only if \(\{e_a;\, a\in A\}\) is an orthonormal basis, a Riesz basis, resp. a frame for \(L^2(\Omega)\). For the case of an orthonormal basis, see B. Fuglede [J. Funct. Anal. 16, 101–121 (1974; Zbl 0279.47014)]. Later this result is extended to vector-valued Gabor systems.

MSC:

42C15 General harmonic expansions, frames
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B35 Function spaces arising in harmonic analysis

Citations:

Zbl 0279.47014

References:

[2] Aldroubi, A.; Groechenig, K., Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43, 4, 585-620 (2001) · Zbl 0995.42022
[3] Barbier, D.; Hernandez, E.; Mayeli, A., Bracket map for Heisenberg group and the characterization of cyclic subspace, Appl. Comput. Harmon. Anal., 37, 218-234 (2014) · Zbl 1436.22005
[4] de Boor, C.; DeVore, R. A.; Ron, A., Approximation from shift invariant subspaces of \(L^2(R^d)\), Trans. Amer. Math. Soc., 341, 2, 787-806 (1993) · Zbl 0790.41012
[5] de Boor, C.; DeVore, R. A.; Ron, A., The structure of finitely generalized shift-invariant spaces in \(L^2(R^d)\), J. Funct. Anal., 119, 37-78 (1994) · Zbl 0806.46030
[6] Bownik, M., The structure of shift-invariant subspace of \(L^2(R^n)\), J. Funct. Anal., 177, 2, 282-309 (2000) · Zbl 0986.46018
[7] Casazza, P. G., An introduction to irregular Weyl-Heisenberg frames, (Sampling, Wavelets, and Tomography. Sampling, Wavelets, and Tomography, Appl. Numer. Harmon. Anal. (2004), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 61-81 · Zbl 1073.42023
[8] Casazza, P. G.; Christensen, O.; Kalton, N. J., Frames of translates, Collect. Math., 52, 35-54 (2001) · Zbl 1029.42029
[9] Casazza, P. G.; Christensen, O.; Janssen, A. J.E. M., Weyl-Heisenberg frames, translation invariant systems and the Walnut representation, J. Funct. Anal., 180, 85-147 (2001) · Zbl 0983.42023
[10] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Birkhäuser · Zbl 1017.42022
[11] Currey, B.; Mayeli, A., A density condition for interpolation on the Heisenberg group, Rocky Mountain J. Math., 42, 4, 1135-1151 (2012) · Zbl 1271.42042
[12] Currey, B.; Mayeli, A.; Oussa, V., Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications, J. Fourier Anal. Appl., 20, 2, 384-400 (Apr. 2014) · Zbl 1308.43006
[13] Duffin, R.; Schaeffer, A., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, 341-366 (1952) · Zbl 0049.32401
[14] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16, 101-121 (1974) · Zbl 0279.47014
[15] Groechenig, K.; Kutyniok, G.; Seip, K., On Landau’s necessary density conditions for sampling and interpolation of band-limited functions, J. Lond. Math. Soc., 54, 3, 557-565 (1996) · Zbl 0893.42017
[16] Hernández, E.; Weiss, G., A First Course on Wavelets, Studies in Advanced Mathematics (1996), CRC Press: CRC Press Boca Raton, FL · Zbl 0885.42018
[17] Hernández, E.; Šikić, H.; Weiss, G.; Wilson, E., Cyclic subspaces for unitary representations of LCA groups: generalized Zak transforms, Colloq. Math., 118, 1, 313-332 (2010) · Zbl 1203.42048
[19] Iosevich, A.; Katz, N. H.; Tao, T., Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math., 123, 1, 115-120 (Feb. 2001) · Zbl 0998.42001
[20] Jaffard, S., A density criterion for frames of complex exponentials, Michigan Math. J., 38, 339-348 (1991) · Zbl 0764.42005
[21] Lagarias, J.; Reed, J.; Wang, Y., Orthogonal bases of exponentials for the \(n\)-cube, Duke Math. J., 103, 25-37 (2000) · Zbl 0978.42007
[22] Landau, H. J., Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117, 1, 37-52 (Jul. 1967) · Zbl 0154.15301
[23] Mallat, S. G., Multiresolution approximation and wavelet orthonormal bases of \(L^2(R)\), Trans. Amer. Math. Soc., 315, 1, 69-87 (1989) · Zbl 0686.42018
[24] Ron, A.; Shen, Z., Frames and stable bases for shift-invariant subspaces of \(L^2(R^d)\), Canad. J. Math., 47, 1051-1094 (1995) · Zbl 0838.42016
[25] Ron, A.; Shen, Z., Affine systems in \(L^2(R^d)\): the analysis of the analysis operator, J. Funct. Anal., 148, 408-447 (1997) · Zbl 0891.42018
[26] Young, R., An Introduction to Nonharmonic Fourier Series (2001), Academic Press: Academic Press San Diego · Zbl 0981.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.