×

Solutions of biharmonic equations with mixed nonlinearity. (English) Zbl 1304.35259

Summary: In this paper, we study the following biharmonic equations with mixed nonlinearity: \(\Delta ^2u-\Delta u+V(x)u=f(x,u)+\lambda \xi(x)|u|^{p-2}u\), \(x\in \mathbb R^N\), \(u\in H^2(\mathbb R^N)\), where \(V\in C(\mathbb R^N)\), \(\xi \in L^{\frac{2}{2-p}}(\mathbb R^N)\), \(1\leq p< 2\), and \(\lambda >0\) is a parameter. The existence of multiple solutions is obtained via variational methods. Some recent results are improved and extended.

MSC:

35J35 Variational methods for higher-order elliptic equations

References:

[1] Alexiades, V, Elcrat, AR, Schaefer, PW: Existence theorems for some nonlinear fourth-order elliptic boundary value problems. Nonlinear Anal. 4, 805-813 (1980) · Zbl 0444.35032 · doi:10.1016/0362-546X(80)90080-2
[2] An, Y, Liu, R: Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation. Nonlinear Anal. 68, 3325-3331 (2008) · Zbl 1158.35041 · doi:10.1016/j.na.2007.03.028
[3] Ayed, MB, Hammami, M: On a fourth-order elliptic equation with critical nonlinearity in dimension six. Nonlinear Anal. 64, 924-957 (2006) · Zbl 1104.35010 · doi:10.1016/j.na.2005.05.050
[4] Benalili, M: Multiplicity of solutions for a fourth-order elliptic equation with critical exponent on compact manifolds. Appl. Math. Lett. 20, 232-237 (2007) · Zbl 1152.35350 · doi:10.1016/j.aml.2006.06.002
[5] Yang, Y, Zhang, JH: Existence of solutions for some fourth-order nonlinear elliptical equations. J. Math. Anal. Appl. 351, 128-137 (2009) · Zbl 1179.35140 · doi:10.1016/j.jmaa.2008.08.023
[6] Yin, YL, Wu, X: High energy solutions and nontrivial solutions for fourth-order elliptic equations. J. Math. Anal. Appl. 375, 699-705 (2011) · Zbl 1206.35120 · doi:10.1016/j.jmaa.2010.10.019
[7] Liu, J, Chen, SX, Wu, X: Existence and multiplicity of solutions for a class of fourth-order elliptic equations in RN \(\mathbb{R}^N\). J. Math. Anal. Appl. 395, 608-615 (2012) · Zbl 1253.35050 · doi:10.1016/j.jmaa.2012.05.063
[8] Ye, YW, Tang, CL: Infinitely many solutions for fourth-order elliptic equations. J. Math. Anal. Appl. 394, 841-854 (2012) · Zbl 1248.35069 · doi:10.1016/j.jmaa.2012.04.041
[9] Ye, YW, Tang, CL: Existence and multiplicity of solutions for fourth-order elliptic equations in RN \(\mathbb{R}^N\). J. Math. Anal. Appl. 406, 335-351 (2013) · Zbl 1311.35094 · doi:10.1016/j.jmaa.2013.04.079
[10] Zhang, W, Tang, XH, Zhang, J: Infinitely many solutions for fourth-order elliptic equations with general potentials. J. Math. Anal. Appl. 407, 359-368 (2013) · Zbl 1311.35095 · doi:10.1016/j.jmaa.2013.05.044
[11] Zhang, W, Tang, XH, Zhang, J: Infinitely many solutions for fourth-order elliptic equations with sign-changing potential. Taiwan. J. Math. 18, 645-659 (2014) · Zbl 1357.35164
[12] Chen, P, Tang, XH: Existence and multiplicity results for infinitely many solutions for Kirchhoff-type problems in R \(3\mathbb{R}^3\). Math. Methods Appl. Sci. 37, 1828-1837 (2014) · Zbl 1306.35036 · doi:10.1002/mma.2938
[13] Sun, JT, Wu, TF: Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation. J. Math. Anal. Appl. 413, 622-632 (2014) · Zbl 1308.34057 · doi:10.1016/j.jmaa.2013.12.023
[14] Zhang, J, Tang, XH, Zhang, W: Existence of infinitely many solutions for a quasilinear elliptic equation. Appl. Math. Lett. 37, 131-135 (2014) · Zbl 1318.35043 · doi:10.1016/j.aml.2014.06.010
[15] Zou, WM, Schechter, M: Critical Point Theory and Its Applications. Springer, New York (2006) · Zbl 1125.58004
[16] Ekeland, I: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990) · Zbl 0707.70003 · doi:10.1007/978-3-642-74331-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.