×

Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using extended unitary operations. (English) Zbl 1303.94087

Summary: We propose two fault-tolerant high-capacity quantum key distribution schemes, in which an entangled pair over a collective-noise channel consisting of one logical qubit and one physical qubit can carry four bits of key information. The basic idea is to use 2-extended unitary operations from collective noises together with quantum dense coding. The key messages are encoded on logical qubits of two physical qubits with sixteen 2-extended unitary operations based on collective noises. The key can be recovered using Bell-state analysis on the logical qubit and a single-photon measurement on the physical qubit rather than three-qubit GHZ joint measurements. The proposed protocols require a collation table to be shared between Alice and Bob in advance. Consequently, the key messages carried by an entangled state, in our protocol, have doubled at the price of sharing the collation table between Alice and Bob. However, the efficiency of qubits is enhanced because a quantum bit is more expensive to prepare than a classical bit.

MSC:

94A60 Cryptography
81P94 Quantum cryptography (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Bennett, C.H., Brassard G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India), pp. 175-179. IEEE, New York (1984) · Zbl 1306.81030
[2] Goldenberg, L., Vaidman, L.: Counterfactual quantum key distribution without polarization encoding. Phys. Rev. Lett. 75, 1239-41 (1995) · Zbl 1020.81548 · doi:10.1103/PhysRevLett.75.1239
[3] Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007) · doi:10.1109/JSTQE.2007.902841
[4] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[5] Lin, S., Huang, C., Liu, X.F.: Multi-user quantum key distribution based on Bell states with mutual authentication. Phys. Scr. 87, 035008 (2013) · doi:10.1088/0031-8949/87/03/035008
[6] Daoud, M., Ez-Zahraouy, H.: Three-dimensional quantum key distribution in the presence of several eavesdroppers. Phys. Scr. 84, 045018 (2011) · Zbl 1263.81132 · doi:10.1088/0031-8949/84/04/045018
[7] Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A 87, 032312 (2013) · doi:10.1103/PhysRevA.87.032312
[8] Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635-5638 (2000) · doi:10.1103/PhysRevLett.85.5635
[9] Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65, 032302-032305 (2002) · doi:10.1103/PhysRevA.65.032302
[10] Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87, 012331 (2013) · doi:10.1103/PhysRevA.87.012331
[11] Guo, Y., Shi, R., Zeng, G.: Secure networking quantum key distribution schemes with Greenberger-Horne-Zeilinger states. Phys. Scr. 81, 045006 (2010) · Zbl 1189.81037 · doi:10.1088/0031-8949/81/04/045006
[12] Tanaka, A., Maeda, W., Takahashi, S., Tajima, A., Tomita, A.: Ensuring quality of shared keys through quantum key distribution for practical application. IEEE J. Sel. Top. Quantum Electron. 15, 1622-1629 (2009) · doi:10.1109/JSTQE.2009.2028243
[13] Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008) · doi:10.1103/PhysRevA.78.022321
[14] Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004) · doi:10.1103/PhysRevLett.92.017901
[15] Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009) · doi:10.1103/PhysRevA.80.032321
[16] Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171-4174 (2009) · doi:10.1016/j.optcom.2009.07.012
[17] Li, C.Y., Li, Y.S.: Fault-tolerate quantum key distribution over a collective-noise channel. Int. J. Quantum Inf. 8(7), 1101-1109 (2010) · Zbl 1209.81083 · doi:10.1142/S0219749910006174
[18] Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7, 1479-1489 (2009) · Zbl 1184.81042 · doi:10.1142/S021974990900595X
[19] Zhao, Z., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54-58 (2004) · doi:10.1038/nature02643
[20] Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operatiors on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881-2884 (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[21] Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145-190 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[22] Yang, C.W., Hwang, T.: Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels. Quantum Inf Process 12, 3207-3222 (2013) · Zbl 1286.81052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.