×

Convergence analysis of Legendre pseudospectral scheme for solving nonlinear systems of Volterra integral equations. (English) Zbl 1303.65112

Summary: We are concerned with the extension of a Legendre spectral method to the numerical solution of systems of nonlinear Volterra integral equations of the second kind. It is proved theoretically that the proposed method converges exponentially provided that the solution is sufficiently smooth. Also, three biological systems which are known as the systems of Lotka-Volterra equations are approximately solved by the presented method. Numerical results confirm the theoretical prediction of the exponential rate of convergence.

MSC:

65R20 Numerical methods for integral equations
45G15 Systems of nonlinear integral equations
45D05 Volterra integral equations
92D25 Population dynamics (general)

References:

[1] A. Bhrawy, L. Assas, E. Tohidi, and M. Alghamdi, “A Legendre-Gauss collocation method for neutral functional-differential equations with proportional delays,” Advances in Difference Equations, vol. 2013, article 63, 2013. · Zbl 1380.65116 · doi:10.1186/1687-1847-2013-63
[2] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, Mineola, NY, USA, 2nd edition, 2001. · Zbl 0994.65128
[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, NY, USA, 1988. · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[4] E. Tohidi, “Legendre approximation for solving linear HPDEs and comparison with Taylor and Bernoulli matrix methods,” Applied Mathematics, vol. 3, no. 5, pp. 410-416, 2012. · doi:10.4236/am.2012.35063
[5] F. Toutounian, E. Tohidi, and A. Kilicman, “Fourier operational matrices of differentiation and transmission: introduction and applications,” Abstract and Applied Analysis, vol. 2013, Article ID 198926, 11 pages, 2013. · Zbl 1275.65036 · doi:10.1155/2013/198926
[6] Y. Chen and T. Tang, “Spectral methods for weakly singular Volterra integral equations with smooth solutions,” Journal of Computational and Applied Mathematics, vol. 233, no. 4, pp. 938-950, 2009. · Zbl 1186.65161 · doi:10.1016/j.cam.2009.08.057
[7] G. N. Elnagar and M. Kazemi, “Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations,” Journal of Computational and Applied Mathematics, vol. 76, no. 1-2, pp. 147-158, 1996. · Zbl 0873.65122 · doi:10.1016/S0377-0427(96)00098-2
[8] Y. J. Jiang, “On spectral methods for Volterra-type integro-differential equations,” Journal of Computational and Applied Mathematics, vol. 230, no. 2, pp. 333-340, 2009. · Zbl 1202.65170 · doi:10.1016/j.cam.2008.12.001
[9] J. S. Nadjafi, O. R. N. Samadi, and E. Tohidi, “Numerical solution of two dimensional integral equations via a spectral Galerkin method,” Journal of Applied Mathematics and Bioinformatics, vol. 1, pp. 343-359, 2011. · Zbl 1270.65079
[10] O. R. N. Samadi and E. Tohidi, “The spectral method for solving system of integral equations,” Journal of Applied Mathematics and Computing, vol. 40, no. 1-2, pp. 477-497, 2012. · Zbl 1295.65128 · doi:10.1007/s12190-012-0582-8
[11] T. Tang, X. Xu, and J. Cheng, “On spectral methods for Volterra integral equations and the convergence analysis,” Journal of Computational Mathematics, vol. 26, no. 6, pp. 825-837, 2008. · Zbl 1174.65058
[12] E. Tohidi and O. R. N. Samadi, “Optimal control of nonlinear Volterra integral equations via Legendre polynomials,” IMA Journal of Mathematical Control and Information, vol. 30, no. 1, pp. 67-83, 2013. · Zbl 1275.49056 · doi:10.1093/imamci/dns014
[13] Z. Wan, Y. Chen, and Y. Huang, “Legendre spectral Galerkin method for second-kind Volterra integral equations,” Frontiers of Mathematics in China, vol. 4, no. 1, pp. 181-193, 2009. · Zbl 1396.65165 · doi:10.1007/s11464-009-0002-z
[14] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, 2006. · Zbl 1093.76002
[15] C. K. Qu and R. Wong, “Szegö’s conjecture on Lebesgue constants for LEGendre series,” Pacific Journal of Mathematics, vol. 135, no. 1, pp. 157-188, 1988. · Zbl 0664.42012 · doi:10.2140/pjm.1988.135.157
[16] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, vol. 7 of London Mathematical Society Student Texts, Cambridge University Press, London, UK, 1988. · Zbl 0678.92010
[17] S. Olek, “An accurate solution to the multispecies Lotka-Volterra equations,” SIAM Review, vol. 36, no. 3, pp. 480-488, 1994. · Zbl 0802.92018 · doi:10.1137/1036104
[18] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2000. · Zbl 1302.92001
[19] D. Cooke and R. W. Hiorns, The Mathematical Theory of the Dynamics of Biological Populations II, Academic Press, 1981. · Zbl 0484.00017
[20] J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[21] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, Md, USA, 1925. · JFM 51.0416.06
[22] V. Volterra, “Variations and fluctuations of the number of individuals in animal species living together,” in Animal Ecology, NewYork, NY,USA, McGraw-Hill, 1931.
[23] J. D. Murray, Mathematical Biology, Springer, Berlin, Germany, 1993. · Zbl 0779.92001 · doi:10.1007/b98869
[24] \cS. Yüzba, “Bessel collocation approach for solving continuous population models for single and interacting species,” Applied Mathematical Modelling, vol. 36, no. 8, pp. 3787-3802, 2012. · Zbl 1252.65137 · doi:10.1016/j.apm.2011.10.033
[25] H. Adibi and A. M. Rismani, “On using a modified Legendre-spectral method for solving singular IVPs of LANe-Emden type,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 2126-2130, 2010. · Zbl 1205.65201 · doi:10.1016/j.camwa.2010.07.056
[26] A. M. Rismani and H. Monfared, “Numerical solution of singular IVPs of Lane-Emden type using a modified LEGendre-spectral method,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 4830-4836, 2012. · Zbl 1252.65135 · doi:10.1016/j.apm.2011.12.018
[27] S. Pamuk and N. Pamuk, “He’s homotopy perturbation method for continuous population models for single and interacting species,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 612-621, 2010. · Zbl 1189.65171 · doi:10.1016/j.camwa.2009.10.031
[28] B. Batiha, M. S. M. Noorani, and I. Hashim, “Variational iteration method for solving multispecies Lotka-Volterra equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 903-909, 2007. · Zbl 1141.65370 · doi:10.1016/j.camwa.2006.12.058
[29] S. Pamuk, “The decomposition method for continuous population models for single and interacting species,” Applied Mathematics and Computation, vol. 163, no. 1, pp. 79-88, 2005. · Zbl 1062.92056 · doi:10.1016/j.amc.2003.10.052
[30] E. Yusufo\uglu and B. Erba\cs, “He’s variational iteration method applied to the solution of the prey and predator problem with variable coefficients,” Physics Letters A, vol. 372, no. 21, pp. 3829-3835, 2008. · Zbl 1220.91003 · doi:10.1016/j.physleta.2008.02.073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.