×

Varieties of \(P\)-restriction semigroups. (English) Zbl 1303.20062

As the author writes in the introduction to the work [P. R. Jones, J. Pure Appl. Algebra 216, No. 3, 618-632 (2012; Zbl 1257.20058)] he has introduced the notion “\(P\)-restriction semigroups as a common generalization of the restriction semigroups (or weakly \(E\)-ample semigroups) and regular \(*\)-semigroups, defining them as bi-unary semigroups – semigroups with two additional unary operations, \(^+\) and \(^*\) – satisfying a set of simple identities. The projections in such a semigroup are the elements of the form \(x^+\) (or, equivalently, \(x^*\)). If \((S,\cdot,{^{-1}})\) is a regular \(*\)-semigroup and \(^+\) and \(^*\) are defined, respectively, by \(x^+=xx^{-1}\) and \(x^*=x^{-1}x\), then its bi-unary reduct is a \(P\)-restriction semigroup …. For any variety \(\mathbf V\) of regular \(*\)-semigroups, let \(C\mathbf V\) (resp. \(\mathbf PC\mathbf V\)) denote the variety of regular \(*\)-semigroups (\(P\)-restriction semigroups) whose projections generate a member of \(\mathbf V\). For instance, if \(\mathbf{Sl}\) is the variety of \(*\)-semilattices, \(C\mathbf V\) and \(\mathbf PC\mathbf V\) are the varieties of inverse semigroups and of restriction semigroups, respectively. The general question is then, “For which varieties \(\mathbf V\) of regular \(*\)-semigroups is it true that the variety of \(P\)-restriction semigroups generated by \(C\mathbf V\) is precisely \(\mathbf PC\mathbf V\)? It is shown that for a given variety \(\mathbf V\), a positive answer to this question is equivalent to the following one: For each nonempty set \(X\), the free \(P\)-restriction semigroup in \(\mathbf PC\mathbf V\), on \(X\), is isomorphic to the bi-unary subsemigroup of the free regular \(*\)-semigroup in \(C\mathbf V\), on \(X\), that is generated by \(X\).”
As the author writes in the abstract this “relationship between varieties of regular \(*\)-semigroups and varieties of \(P\)-restriction semigroups is studied. In particular, a tight relationship exists between varieties of orthodox \(*\)-semigroups and varieties of orthodox \(P\)-restriction semigroups, leading to concrete descriptions of the free orthodox \(P\)-restriction semigroups.” There are some other results in this direction.

MSC:

20M07 Varieties and pseudovarieties of semigroups
20M05 Free semigroups, generators and relations, word problems
08B15 Lattices of varieties

Citations:

Zbl 1257.20058
Full Text: DOI

References:

[1] Adair , C. L. ( 1979 ). Varieties of * orthodox semigroups. Ph.D. Thesis, University of South Carolina .
[2] DOI: 10.1016/0021-8693(82)90042-4 · Zbl 0501.20040 · doi:10.1016/0021-8693(82)90042-4
[3] DOI: 10.1007/978-1-4613-8130-3 · doi:10.1007/978-1-4613-8130-3
[4] DOI: 10.1016/S0304-3975(00)00382-0 · Zbl 0988.18003 · doi:10.1016/S0304-3975(00)00382-0
[5] Cornock , C. Private communication .
[6] Cornock , C. ( 2011 ).Restriction Semigroups: Structure, Varieties and Presentations.Ph.D. Thesis .
[7] DOI: 10.1017/S0017089500008168 · Zbl 0737.20032 · doi:10.1017/S0017089500008168
[8] DOI: 10.1142/S0218196709005214 · Zbl 1192.20041 · doi:10.1142/S0218196709005214
[9] European J. Pure Appl. Math. 2 pp 21– (2009)
[10] Fundamentals of Semigroup Theory (1995) · Zbl 0835.20077
[11] DOI: 10.1007/BF02572693 · Zbl 0448.20056 · doi:10.1007/BF02572693
[12] Peter R. Jones. ( 2011 ). A common framework for restriction semigroups and regular *-semigroups .J. Pure Appl. Algebra · Zbl 1257.20058
[13] DOI: 10.1007/BF02573274 · Zbl 0705.20052 · doi:10.1007/BF02573274
[14] DOI: 10.1016/0021-8693(91)90242-Z · Zbl 0747.18007 · doi:10.1016/0021-8693(91)90242-Z
[15] Nambooripad , K. S. S. Pastijn , F. J. C. M. ( 1981 ). Regular involution semigroups.Colloq. Math. Soc. Janos Bolyai, Proceedings of the Conference on Semigroups, Szegedpp. 199–249 . · Zbl 0697.20048
[16] DOI: 10.1007/BF02194636 · Zbl 0408.20043 · doi:10.1007/BF02194636
[17] Petrich M., Bollettino U.M.I. (6) 4 pp 343– (1985)
[18] Polák L., World Sci. Publ. pp 184– (1991)
[19] DOI: 10.1016/S0022-4049(00)00011-6 · Zbl 0981.20048 · doi:10.1016/S0022-4049(00)00011-6
[20] DOI: 10.1007/BF02575021 · Zbl 0638.20032 · doi:10.1007/BF02575021
[21] DOI: 10.1090/S0002-9939-1973-0310093-1 · doi:10.1090/S0002-9939-1973-0310093-1
[22] Scheiblich H. E., Semigroups pp 191– (1980) · doi:10.1016/B978-0-12-319450-3.50021-9
[23] DOI: 10.1216/RMJ-1982-12-2-205 · Zbl 0504.20040 · doi:10.1216/RMJ-1982-12-2-205
[24] Szendrei M., Simon Stevin 59 pp 175– (1985)
[25] Semigroups, Theory and Applications, Proceedings, Oberwolfach 1986 (1988)
[26] Bull. Tokyo Gakugei Univ. 30 pp 21– (1978)
[27] DOI: 10.1007/BF02572830 · Zbl 0513.20045 · doi:10.1007/BF02572830
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.