×

A hyponormal weighted shift on a directed tree whose square has trivial domain. (English) Zbl 1301.47043

Motivated by the question of whether there exists a subnormal weighted shift on a direct tree with nonzero weights whose square has trivial domain, the authors prove that, up to isomorphism, there are only two directed trees that admit an injective hyponormal weighted shift with nonzero weights whose square has trivial domain. These are precisely those enumerable (i.e., countably infinite) directed trees, one with root, the other without, whose every vertex has an enumerable set of successors. They also provide an example of a nonzero hyponormal composition operator in an \(L^2\)-space over a \(\sigma\)-finite space whose square has trivial domain.

MSC:

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B20 Subnormal operators, hyponormal operators, etc.
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)

References:

[1] N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993. Translated from the Russian and with a preface by Merlynd Nestell; Reprint of the 1961 and 1963 translations; Two volumes bound as one. · Zbl 0874.47001
[2] M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller.
[3] Errett Bishop, Spectral theory for operators on a Banach space, Trans. Amer. Math. Soc. 86 (1957), 414 – 445. · Zbl 0080.09903
[4] Piotr Budzyński, Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, Unbounded subnormal weighted shifts on directed trees, J. Math. Anal. Appl. 394 (2012), no. 2, 819 – 834. · Zbl 1304.47042 · doi:10.1016/j.jmaa.2012.04.074
[5] Piotr Budzyński, Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, Unbounded subnormal weighted shifts on directed trees. II, J. Math. Anal. Appl. 398 (2013), no. 2, 600 – 608. · Zbl 1304.47043 · doi:10.1016/j.jmaa.2012.08.067
[6] Paul R. Chernoff, A semibounded closed symmetric operator whose square has trivial domain, Proc. Amer. Math. Soc. 89 (1983), no. 2, 289 – 290. · Zbl 0526.47011
[7] John B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. · Zbl 0743.47012
[8] Ciprian Foiaş, Décompositions en opérateurs et vecteurs propres. I. Études de ces décompositions et leurs rapports avec les prolongements des opérateurs, Rev. Math. Pures Appl. (Bucarest) 7 (1962), 241 – 282 (French). · Zbl 0204.15501
[9] Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, Weighted shifts on directed trees, Mem. Amer. Math. Soc. 216 (2012), no. 1017, viii+106. · Zbl 1248.47033 · doi:10.1090/S0065-9266-2011-00644-1
[10] Zenon Jan Jabłoński, Il Bong Jung, and Jan Stochel, A non-hyponormal operator generating Stieltjes moment sequences, J. Funct. Anal. 262 (2012), no. 9, 3946 – 3980. · Zbl 1258.47026 · doi:10.1016/j.jfa.2012.02.006
[11] Z. J. Jabłoński, I. B. Jung, J. Stochel, Normal extensions escape from the class of weighted shifts on directed trees, Complex Anal. Oper. Theory, DOI 10.1007/s11785-011-0177-7.
[12] Jan Janas, On unbounded hyponormal operators, Ark. Mat. 27 (1989), no. 2, 273 – 281. · Zbl 0684.47020 · doi:10.1007/BF02386376
[13] Jan Janas, On unbounded hyponormal operators. II, Integral Equations Operator Theory 15 (1992), no. 3, 470 – 478. · Zbl 0772.47005 · doi:10.1007/BF01200330
[14] J. Janas, On unbounded hyponormal operators. III, Studia Math. 112 (1994), no. 1, 75 – 82. · Zbl 0820.47025
[15] M. Neumark, On the square of a closed symmetric operator, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 866 – 870. · Zbl 0023.13302
[16] Schōichi Ōta and Konrad Schmüdgen, On some classes of unbounded operators, Integral Equations Operator Theory 12 (1989), no. 2, 211 – 226. · Zbl 0683.47031 · doi:10.1007/BF01195114
[17] Jan Stochel, An asymmetric Putnam-Fuglede theorem for unbounded operators, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2261 – 2271. · Zbl 0981.47020
[18] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators. I, J. Operator Theory 14 (1985), no. 1, 31 – 55. · Zbl 0613.47022
[19] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators. II, Acta Sci. Math. (Szeged) 53 (1989), no. 1-2, 153 – 177. · Zbl 0698.47003
[20] Jan Stochel and Franciszek H. Szafraniec, On normal extensions of unbounded operators. III. Spectral properties, Publ. Res. Inst. Math. Sci. 25 (1989), no. 1, 105 – 139. · Zbl 0721.47009 · doi:10.2977/prims/1195173765
[21] Jan Stochel and Franciszek Hugon Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Anal. 159 (1998), no. 2, 432 – 491. , https://doi.org/10.1006/jfan.1998.3284 Mihai Putinar and Florian-Horia Vasilescu, Solving moment problems by dimensional extension, Ann. of Math. (2) 149 (1999), no. 3, 1087 – 1107. · Zbl 0939.44003 · doi:10.2307/121083
[22] Franciszek Hugon Szafraniec, Sesquilinear selection of elementary spectral measures and subnormality, Elementary operators and applications (Blaubeuren, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 243 – 248.
[23] Franciszek Hugon Szafraniec, On normal extensions of unbounded operators. IV. A matrix construction, Operator theory and indefinite inner product spaces, Oper. Theory Adv. Appl., vol. 163, Birkhäuser, Basel, 2006, pp. 337 – 350. · Zbl 1106.47021 · doi:10.1007/3-7643-7516-7_14
[24] Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. · Zbl 0434.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.