×

Efficient estimation and particle filter for max-stable processes. (English) Zbl 1300.62094

Summary: Extreme values are often correlated over time, for example, in a financial time series, and these values carry various risks. Max-stable processes such as maxima of moving maxima (M3) processes have been recently considered in the literature to describe time-dependent dynamics, which have been difficult to estimate. This article first proposes a feasible and efficient Bayesian estimation method for nonlinear and non-Gaussian state space models based on these processes and describes a Markov chain Monte Carlo algorithm where the sampling efficiency is improved by the normal mixture sampler. Furthermore, a unique particle filter that adapts to extreme observations is proposed and shown to be highly accurate in comparison with other well-known filters. Our proposed algorithms were applied to daily minima of high-frequency stock return data, and a model comparison was conducted using marginal likelihoods to investigate the time-dependent dynamics in extreme stock returns for financial risk management.

MSC:

62M20 Inference from stochastic processes and prediction
60G70 Extreme value theory; extremal stochastic processes
60G52 Stable stochastic processes
62F15 Bayesian inference
60J22 Computational methods in Markov chains
62P05 Applications of statistics to actuarial sciences and financial mathematics
91G70 Statistical methods; risk measures
91B84 Economic time series analysis

Software:

ismev

References:

[1] Beirlant, Statistics of Extremes: Theory and Applications (2004) · Zbl 1070.62036 · doi:10.1002/0470012382
[2] Chamú Morales , F. 2005 Estimation of max-stable processes using monte carlo methods with applications to financial risk assessment Department of Statistics, University of North Carolina
[3] Chib, Marginal likelihood from the Gibbs output, Journal of the American Statistical Association 90 pp 1313– (1995) · Zbl 0868.62027 · doi:10.2307/2291521
[4] Chib, Handbook of Econometrics 5 pp 3569– (2001)
[5] Chib, Analysis of multifactor affine yield curve models, Journal of the American Statistical Association 104 pp 1324– (2009) · Zbl 1205.91173 · doi:10.1198/jasa.2009.ap08029
[6] Chib, Markov chain Monte Carlo simulation methods in econometrics, Econometric Theory 12 pp 409– (1996) · doi:10.1017/S0266466600006794
[7] Chib, Marginal likelihood from the Metropolis- Hastings output, Journal of the American Statistical Association 96 pp 270– (2001) · Zbl 1015.62020 · doi:10.1198/016214501750332848
[8] Coles, An Introduction to Statistical Modeling of Extreme Values (2001) · Zbl 0980.62043 · doi:10.1007/978-1-4471-3675-0
[9] Davis, Basic properties and prediction of max-arma processes, Advances in applied probability 21 pp 781– (1989) · Zbl 0716.62098 · doi:10.2307/1427767
[10] Davis, Prediction of stationary max-stable processes, Annals of Applied Probability 3 pp 497– (1993) · Zbl 0779.60048 · doi:10.1214/aoap/1177005435
[11] de Haan, Extreme Value Theory: An Introduction (2006) · Zbl 1101.62002 · doi:10.1007/0-387-34471-3
[12] Deheuvels, Point processes and multivariate extreme values, Journal of Multivariate Analysis 13 pp 257– (1983) · Zbl 0519.60045 · doi:10.1016/0047-259X(83)90025-8
[13] Doornik, Ox: Object Oriented Matrix Programming (2006)
[14] Doucet, Sequential Monte Carlo Methods in Practice (2001) · Zbl 0967.00022 · doi:10.1007/978-1-4757-3437-9
[15] Embrechts, Modelling Extremal Events: For Insurance and Finance (1997) · Zbl 0873.62116 · doi:10.1007/978-3-642-33483-2
[16] Frühwirth-Schnatter, Finite Mixture and Markov Switching Models (2006)
[17] Frühwirth-Schnatter, Auxiliary mixture sampling with applications to logistic models, Computational Statistics and Data Analysis 51 pp 3509– (2007) · Zbl 1161.62387 · doi:10.1016/j.csda.2006.10.006
[18] Frühwirth-Schnatter, Improved auxiliary mixture sampling for hierarchical models of non- Gaussian data, Statistics and Computing 19 pp 479– (2009) · doi:10.1007/s11222-008-9109-4
[19] Frühwirth-Schnatter, Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling, Biometrika 93 pp 827– (2006) · Zbl 1436.62421 · doi:10.1093/biomet/93.4.827
[20] Früwirth-Schnatter, Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models, Journal of the American Statistical Association 96 pp 194– (2001) · Zbl 1015.62022 · doi:10.1198/016214501750333063
[21] Gaetan, Smoothing sample extremes with dynamic models, Extremes 7 pp 221– (2004) · Zbl 1090.62047 · doi:10.1007/s10687-005-6474-7
[22] Gamerman, Markov Chain Monte Carlo. Stochastic Simulation for Bayesian Inference (2006)
[23] Geweke, Bayesian Statistics 4 pp 169– (1992) · Zbl 1093.62107
[24] Geweke, Contemporary Bayesian Econometrics and Statistics (2005) · Zbl 1093.62107 · doi:10.1002/0471744735
[25] Hall, Moving-maximum models for extrema of time series, Journal of Statistical Planning and Inference 103 pp 51– (2002) · Zbl 0989.62047 · doi:10.1016/S0378-3758(01)00197-5
[26] Heffernan, Asymptotically (in)dependent multivariate maxima of moving maxima processes, Extremes 10 pp 57– (2007) · Zbl 1150.60030 · doi:10.1007/s10687-007-0035-1
[27] Huerta, Time-varying models for extreme values, Environmental and Ecological Statistics 14 pp 285– (2007) · doi:10.1007/s10651-007-0014-3
[28] Kim, Stochastic volatility: likelihood inference and comparison with ARCH models, Review of Economic Studies 65 pp 361– (1998) · Zbl 0910.90067 · doi:10.1111/1467-937X.00050
[29] Koop, Bayesian Econometrics (2003)
[30] Leadbetter, Extremes and Related Properties of Random Sequences and Processes (1983) · doi:10.1007/978-1-4612-5449-2
[31] Martins, The multivariate extremal index and the dependence structure of a multivariate extreme value distribution, TEST 14 pp 433– (2005) · Zbl 1087.62062 · doi:10.1007/BF02595412
[32] Nakajima, Generalized extreme value distribution with time-dependence using the AR and MA models in state space form, Computational Statistics and Data Analysis (forthcoming) · Zbl 1255.62150
[33] Omori, Stochastic volatility with leverage: fast likelihood inference, Journal of Econometrics 140 pp 425– (2007) · Zbl 1247.91207 · doi:10.1016/j.jeconom.2006.07.008
[34] Pitt, Filtering via simulation: auxiliary particle filter, Journal of the American Statistical Association 94 pp 590– (1999) · Zbl 1072.62639 · doi:10.2307/2670179
[35] Resnick, Extreme Values, Regular Variation, and Point Processes (1987) · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[36] Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling (2007) · Zbl 1152.62029
[37] Smith, Extreme Values in Finance, Telecommunications and the Environment pp 1– (2003)
[38] Smith, A non- Gaussian state space model and application to prediction of records, Journal of Royal Statistical Society 48 pp 79– (1986) · Zbl 0593.62099
[39] Smith , R. L. Weissman I. 1996 Characterization and estimation of the multivariate extremal index
[40] Zhang , Z. 2002 Multivariate extremes, max-stable process estimation and dynamic financial modeling Department of Statistics, University of North Carolina
[41] Zhang, On approximating max-stable processes and constructing extremal copula functions, Statistical Inference for Stochastic Processes 12 pp 89– (2009) · Zbl 1205.60102 · doi:10.1007/s11203-008-9027-2
[42] Zhang, The behavior of multivariate maxima of moving maxima processes, Journal of Applied Probability 41 pp 1113– (2004) · Zbl 1122.60052 · doi:10.1239/jap/1101840556
[43] Zhang, On the estimation and application of max-stable processes, Journal of Statistical Planning and Inference 140 pp 1135– (2010) · Zbl 1181.62150 · doi:10.1016/j.jspi.2009.10.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.