×

Riemann solution for ideal isentropic magnetogasdynamics. (English) Zbl 1299.76301

Summary: In the present paper, we study the Riemann problem for quasilinear hyperbolic system of partial differential equations governing the one dimensional ideal isentropic magnetogasdynamics with transverse magnetic field. We discuss the properties of rarefaction waves, shocks and contact discontinuities. Differently from single equation methods rooted in the ideal gasdynamics, the new approach is based on the system of two nonlinear equations imposing the equality of total pressure and velocity, assuming as unknowns the two values of densities, on both sides of the contact discontinuity. Newton iterative method is used to obtain densities. The resulting exact solver is implemented with the examples of general applicability of the proposed approach. For comparisons with exact solution we also shown numerical results obtained by the total variation diminishing slope limiter centre scheme. It is shown that both analytical and numerical results demonstrate the broad applicability and robustness of the new Riemann solver.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76L05 Shock waves and blast waves in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Cabannes H (1970) Theoretical magnetofluid dynamics, in applied mathematics and mechanics, vol 13. Academic Press, New York
[2] Gundersen R (1964) Linearized analysis of one-dimensional magnetohydrodynamic flows. Springer-Verlag, Berlin · Zbl 0123.22301 · doi:10.1007/978-3-642-46005-0
[3] Landau LD, Lifshitz EM (2005) Electrodynamics of continuous media, 2nd edn. Elsevier, Oxford
[4] Myong RS, Roe PL (1997) Shock waves and rarefaction waves in magnetohydrodynamics part 1. A model system. J Plasma Phys 58:485-519 · doi:10.1017/S002237789700593X
[5] Myong RS, Roe PL (1997) Shock waves and rarefaction waves in magnetohydrodynamics part 2. The MHD system. J Plasma Phys 58:521-552 · doi:10.1017/S0022377897005941
[6] Shen C (2011) The limits of Riemann solutions to the isentropic magnetogasdynamics. Appl Math Lett 24:1124-1129 · Zbl 1215.35105 · doi:10.1016/j.aml.2011.01.038
[7] Singh LP, Husain A, Singh M (2011) A self-similar solution of exponential shock waves in non-ideal magnetogasdynamics. Meccanica 46:437-445 · Zbl 1271.76388 · doi:10.1007/s11012-010-9325-9
[8] Toro EF (1997) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin · Zbl 0888.76001 · doi:10.1007/978-3-662-03490-3
[9] Courant R, Friedrichs KO (1999) Supersonic flow and shock waves. Interscience, New York · Zbl 0041.11302
[10] Glimm J (1965) Solutions in the large for nonlinear hyperbolic systems of equations. Commun Pure Appl Math 18:697-715 · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[11] Lax PD (1957) Hyperbolic systems of conservation laws II. Commun Pure Appl Math 10:537-566 · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[12] Smoller J (1994) Shock waves and reaction-diffusion equations. Springer-Verlag, New York · Zbl 0807.35002 · doi:10.1007/978-1-4612-0873-0
[13] Jena J, Singh R (2013) Existence and interaction of acceleration wave with a characteristic shock in transient pinched plasma. Meccanica 48:733-738 · Zbl 1293.76080 · doi:10.1007/s11012-012-9627-1
[14] Hu Y, Sheng W (2013) The Riemann problem of conservation laws in magnetogasdynamics. Commun Pure Appl Anal 12:755-769 · Zbl 1267.35127 · doi:10.3934/cpaa.2013.12.755
[15] Bira B, Raja Sekhar T (2013) Exact solutions to magnetogasdynamics using Lie point symmetries. Meccanica 48:1023-1029 · Zbl 1293.76106 · doi:10.1007/s11012-012-9649-8
[16] Raja Sekhar T, Sharma VD (2012) Solution to the Riemann problem in a one-dimensional magnetogasdynamic flow. Int J Comput Math 89:200-216 · Zbl 1238.76052 · doi:10.1080/00207160.2011.632634
[17] Balsara DS (1998) Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics. Astrophys J Suppl Ser 116:119-131 · doi:10.1086/313092
[18] Bouchut F, Klingenberg C, Waagan K (2007) A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework. Numer Math 108:7-42 · Zbl 1126.76034 · doi:10.1007/s00211-007-0108-8
[19] Bouchut F, Klingenberg C, Waagan K (2010) A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer Math 115:647-679 · Zbl 1426.76338 · doi:10.1007/s00211-010-0289-4
[20] Dai W, Woodward PR (1995) A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws. J Comput Phys 121:51-65 · Zbl 0838.65088 · doi:10.1006/jcph.1995.1178
[21] Dai W, Woodward PR (1994) An approximation Riemann solver for ideal magnetohydrodynamics. J Comput Phys 111:354-372 · Zbl 0797.76052 · doi:10.1006/jcph.1994.1069
[22] Torrihon M (2003) Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics. J Comput Phys 192:73-94 · Zbl 1032.76721 · doi:10.1016/S0021-9991(03)00347-4
[23] Ryu D, Jones T (1995) Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys J Lett 442:228-258 · doi:10.1086/175437
[24] Dumbser M, Toro EF (2011) On universal Osher-type schemes for general nonlinear hyperbolic conseravtion laws. Commun Comput Phys 10:635-671 · Zbl 1373.76125
[25] Glacomazzo B, Rezzolla L (2006) The exact solution of the Riemann problem in relativistic magnetohydrodynamics. J Fluid Mech 562:223-259 · Zbl 1097.76073 · doi:10.1017/S0022112006001145
[26] Mignone A (2007) A simple and accurate Riemann solver for isothermal MHD. J Comput Phys 225:1427-1441 · Zbl 1343.76034 · doi:10.1016/j.jcp.2007.01.033
[27] Thevand N, Daniel E, Loraud JC (1999) On high-resolution schemes for solving unsteady compressible two-phase dilute viscous flows. Int J Numer Methods Fluids 31:681-702 · Zbl 0952.76062 · doi:10.1002/(SICI)1097-0363(19991030)31:4<681::AID-FLD893>3.0.CO;2-K
[28] Raja Sekhar T, Sharma VD (2010) Riemann problem and elementary wave interactions in isentropic magnetogasdynamics. Nonlinear Anal Real World Appl 11:619-636 · Zbl 1183.35230 · doi:10.1016/j.nonrwa.2008.10.036
[29] Liu Y, Sun W (2013) Riemann problem and wave interactions in magnetogasdynamics. J Math Anal Appl 397:454-466 · Zbl 1256.35087 · doi:10.1016/j.jmaa.2012.07.064
[30] Toro EF, Billett S (2000) Centred TVD schemes for hyperbolic conservation laws. IMA J Numer Anal 20:47-79 · Zbl 0943.65100 · doi:10.1093/imanum/20.1.47
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.