×

On the maximal operators of Walsh-Kaczmarz-Fejér means. (English) Zbl 1299.42097

Let \(G\) be the complete direct countable product of discrete groups \(\mathbb Z_2=\{0,1\}\) with product measure \(\mu\). Every \(x\in G\) has the form \(x=(x_0,x_1,\dots)\), \(x_i\in\mathbb Z_2\). If \(k\in {\boldsymbol P}=\{0,1,\dots\}\) and \(x\in G\), then \(r_k(x):=(-1)^{x_k}\). For \(n\in{\boldsymbol P}\) we have \(n=\sum^{| n| }_{i=0}n_i2^i\), where \(n_i\in\mathbb Z_2\), \(| n| =\max\{j\in{\boldsymbol P}:n_j\neq 0\}\). Then by definition \(\kappa_n(x)=r_{| n| }(x)\prod^{| n| -1}_{k=0}(r_{| n| -1-k} (x))^{n_k}\). System \(\{\kappa_n(x)\}_{n\in{\boldsymbol P}}\) is called Walsh-Kaczmarz system. For a dyadic martingale \(f=\{f^{(n)}\}_{n=1}^\infty\) one can define \[ \hat{f}_\kappa(n) =\lim_{n\to\infty}\int_G f^{(n)}(x) \kappa_n(x)\,d\mu(x),\;n\in{\boldsymbol P}, \quad S_n^\kappa(f,x)=\sum^{n-1}_{i=0}\hat{f}_\kappa(i)\kappa_i(x); \]
\[ \sigma_n^\kappa(f,x)=n^{-1}\sum_{k=1}^n S_k^\kappa(f,x), \quad n\in\mathbb N=\{1,2,\dots\}, \quad \sigma^{\kappa,*}_p f:=\sup_{n\in{\boldsymbol P}}(n+1)^{2-1/p}| \sigma_n^\kappa(f)| . \] If \(p>0\) and \(f^*:=\sup_{n\in{\boldsymbol P}}| f^{(n)}| \in L^p(G)\), then \(f\in H^p(G)\) and \(\| f\| _{H^p}=\| f^*\| _{L^p}\). Further \(\| f\| _{L^{p,\infty}} :=\sup_{\lambda>0} \lambda(\mu\{| f| >\lambda\})^{1/p}\).
Theorem 1. Let \(0<p<1/2\). Then the maximal operator \(\sigma^{\kappa,*}_p f\) is bounded from \(H^p(G)\) to \(L^p(G)\).
Theorem 2. Let \(0<p<1/2\) and \(\varphi \colon \mathbb N\to [1,+\infty)\) be a decreasing function satisfying the condition \(\limsup_{n\to\infty}n^{1/p-2}/\varphi(n)=\infty\). Then there exists a dyadic martingale \(f\in H^p(G)\) such that \(\sup_{n}\| \sigma_n^\kappa(f)/\varphi(n) \| _{L^{p,\infty}}=\infty\).
Remark. In the statement of Theorem 2 \(\sigma_n(f)\) is written instead of \(\sigma_n^\kappa(f)\).

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
43A75 Harmonic analysis on specific compact groups
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.

References:

[1] J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A., 41 (1955), 588-591. · Zbl 0065.05303 · doi:10.1073/pnas.41.8.588
[2] N. Fujii, A maximal inequality for H1-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc., 77 (1979), 111-116. · Zbl 0415.43014
[3] G. Gát, On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math., 130 (1998), 135-148. · Zbl 0905.42016
[4] G. Gát, U. Goginava and K. Nagy, On the Marcinkiewicz-Fejér means of dou-ble Fourier series with respect to the Walsh-Kaczmarz system, Studia Sci. Math. Hungar., 46 (2009), 399-421. · Zbl 1274.42068 · doi:10.1556/SScMath.2009.1099
[5] U. Goginava and K. Nagy, On the maximal operator of Walsh-Kaczmarz-Fejér means, Czechoslovak Math. J., 61 (2011), 673-686. · Zbl 1249.42011 · doi:10.1007/s10587-011-0038-6
[6] U. Goginava, The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement, Publ. Math. Debrecen, 71 (2007), 43-55. · Zbl 1136.42024
[7] U. Goginava, The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx., 12 (2006), 295-302. · Zbl 1487.42067
[8] U. Goginava, Maximal operators of Fejér-Walsh means, Acta Sci. Math. (Szeged), 74 (2008), 615-624. · Zbl 1199.42127
[9] U. Goginava, Maximal operator of the Fejér means of double Walsh-Fourier series, Acta Math. Hungar., 115 (2007), 333-340. · Zbl 1174.42336 · doi:10.1007/s10474-007-5268-6
[10] F. Schipp, W. R. Wade, P. Simon and J. PÁL, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol — New York, 1990. · Zbl 0727.42017
[11] F. Schipp, Certain rearrengements of series in the Walsh series, Mat. Zametki, 18 (1975), 193-201. · Zbl 0349.42013
[12] F. Schipp, Pointwise convergence of expansions with respect to certain product systems, Anal. Math., 2 (1976), 65-76. · Zbl 0343.42009 · doi:10.1007/BF02079908
[13] P. Simon, Cesàro summability with respect to two-parameter Walsh-system, Monatsh. Math., 131 (2000), 321-334. · Zbl 0976.42014 · doi:10.1007/s006050070004
[14] P. Simon, On the Cesàro summability with respect to theWalsh—Kaczmarz system, J. Approx. Theory, 106 (2000), 249-261. · Zbl 0987.42021 · doi:10.1006/jath.2000.3488
[15] V. A. Skvortsov, On Fourier series with respect to the Walsh-Kaczmarz system, Anal. Math., 7 (1981), 141-150. · Zbl 0472.42014 · doi:10.1007/BF02350811
[16] A. A. Šneider, On series with respect to the Walsh functions with monotone coefficients, Izv. Akad. Nauk SSSR Ser. Math., 12 (1948), 179-192 (in Russian). · Zbl 0029.25603
[17] G. Tephnadze, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hungar., 49 (2012), 79-90. · Zbl 1265.42099 · doi:10.1556/SScMath.2011.1187
[18] Tephnadze, G., On the maximal operator of Vilenkin-Fejér means (2012)
[19] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl., 16 (2013), 301-312. · Zbl 1263.42008
[20] S. H. Yano, On Walsh series, Tohoku Math. J., 3 (1951), 223-242. · Zbl 0044.07101 · doi:10.2748/tmj/1178245527
[21] W. S. Young, On the a.e. converence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc., 44 (1974), 353-358. · Zbl 0288.42005 · doi:10.1090/S0002-9939-1974-0350310-6
[22] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer-Verlang, Berlin, 1994. · Zbl 0796.60049
[23] F. Weisz, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002. · Zbl 1306.42003 · doi:10.1007/978-94-017-3183-6
[24] F. Weisz, Cesàro summability of one and two-dimensional Walsh-Fourier series, Anal. Math., 22 (1996), 229-242. · Zbl 0866.42020 · doi:10.1007/BF02205221
[25] F. Weisz, θ-summability of Fourier series, Acta Math. Hungar., 103 (2004), 139-176. · Zbl 1060.42021 · doi:10.1023/B:AMHU.0000028241.87331.c5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.