×

Flexible varieties and automorphism groups. (English) Zbl 1295.14057

The authors study the properties of flexibility and transitivity of automorphism groups for affine algebraic varieties. Given an irreducible affine algebraic variety \(X\), they consider the subgroup \(\mathrm{SAut}(X)\) of \(\mathrm{Aut}(X)\) generated by all one-parameter unipotent subgroups. Denote by \(X_{\mathrm{reg}}\) the smooth locus of \(X\). One says that \(\mathrm{SAut}(X)\) acts infinitely transitively on \(X_{\mathrm{reg}}\) if it acts \(m\)-transitively on \(X_{\mathrm{reg}}\) for all \(m\in{\mathbb{N}}\). A point \(x\in X_{\mathrm{reg}}\) is called flexible if the tangent space \(T_xX\) is spanned by tangent vectors to its orbits under one parameter unipotent subgroups of \(\mathrm{Aut}(X)\). \(X\) is called flexible if all points of \(X_{\mathrm{reg}}\) are flexible. The property of flexibility and its relation to transitivity properties of \(\mathrm{SAut}(X)\) was previously considered in [I. V. Arzhantsev et al., Sb. Math. 203, No. 7, 923–949 (2012); translation from Mat. Sb. 203, No. 7, 3–30 (2012; Zbl 1311.14059)]. In the present article it is proven that, for an affine irreducible variety \(X\) of dimension at least two, the following three conditions are equivalent: (1) \(X\) is flexible; (2) \(\mathrm{SAut}(X)\) acts transitively on \(X_{\mathrm{reg}}\); and (3) \(\mathrm{SAut}(X)\) acts infinitely transitively on \(X_{\mathrm{reg}}\). The authors also study modifications of this result and several applications. In particular, it is shown that affine irreducible affine varieties on which the group \(\mathrm{SAut}(X)\) has an open orbit are exactly those which have a flexible point. They are also characterised as those whose field Makar-Limanov invariant is trivial, and they are always unirational. Finally, the condition of holomorphic flexibility is discussed.

MSC:

14R20 Group actions on affine varieties
32M17 Automorphism groups of \(\mathbb{C}^n\) and affine manifolds
14L30 Group actions on varieties or schemes (quotients)

Citations:

Zbl 1311.14059

References:

[1] I. V. Arzhantsev, M. G. Zaidenberg, and K. G. Kuyumzhiyan, Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity , Sb. Math. 203 (2012), 923-949. · Zbl 1311.14059 · doi:10.4213/sm7876
[2] V. Batyrev and F. Haddad, On the geometry of \(\operatorname{SL}(2)\)-equivariant flips , Mosc. Math. J. 8 (2008), 621-646, 846. · Zbl 1221.14052
[3] A. Białynicki-Birula, G. Hochschild, and G. D. Mostow, Extensions of representations of algebraic linear groups , Amer. J. Math. 85 (1963), 131-144. · Zbl 0116.02302 · doi:10.2307/2373191
[4] F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, “Unirationality and existence of infinitely transitive models,” to appear in Birational Geometry, Rational Curves, and Arithmetic , preprint, [math.AG]. 1204.0862v3
[5] A. Borel, Les bouts des espaces homogènes de groupes de Lie , Ann. of Math. (2) 58 (1953), 443-457. · Zbl 0053.13002 · doi:10.2307/1969747
[6] G. T. Buzzard and F. Forstneric, An interpolation theorem for holomorphic automorphisms of \(\mathbf{C}^n\) , J. Geom. Anal. 10 (2000), 101-108. · Zbl 0963.32014 · doi:10.1007/BF02921807
[7] V. I. Danilov, “Algebraic varieties and schemes” in Algebraic Geometry, I , Encyclopaedia Math. Sci. 23 , Springer, Berlin, 1994, 167-297. · Zbl 0787.14001
[8] F. Donzelli, Algebraic density property of Danilov-Gizatullin surfaces , Math. Z. 272 (2012), 1187-1194. · Zbl 1260.32006 · doi:10.1007/s00209-012-0982-3
[9] F. Donzelli, Makar-Limanov invariant, Derksen invariant, flexible points , preprint, [math.AG]. 1107.3340v1
[10] A. Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant , Michigan Math. J. 52 (2004), 289-308. · Zbl 1072.14075 · doi:10.1307/mmj/1091112077
[11] H. Flenner, S. Kaliman, and M. Zaidenberg, Smooth affine surfaces with nonunique \(\mathbb{C}^*\)-actions , J. Algebraic Geom. 20 (2011), 329-398. · Zbl 1237.14072 · doi:10.1090/S1056-3911-2010-00533-4
[12] F. Forstnerič, “The homotopy principle in complex analysis: a survey” in Explorations in Complex and Riemannian Geometry , Contemp. Math. 332 , Amer. Math. Soc., Providence, 2003, 73-99. · Zbl 1048.32004 · doi:10.1090/conm/332/05930
[13] F. Forstnerič, Holomorphic flexibility properties of complex manifolds , Amer. J. Math. 128 (2006), 239-270. · Zbl 1171.32303 · doi:10.1353/ajm.2006.0005
[14] F. Forstnerič, Stein manifolds and holomorphic mappings , Ergeb. Math. Grenzgeb. (3) 56 , Springer, Berlin, 2011.
[15] G. Freudenburg, Algebraic theory of locally nilpotent derivations , Encyclopaedia Math. Sci. 136 , Springer, Berlin, 2006. · Zbl 1121.13002
[16] G. Freudenburg and P. Russell, “Open problems in affine algebraic geometry: 11, Problems by V. Popov” in Affine Algebraic Geometry , Contemp. Math. 369 , Amer. Math. Soc., Providence, 2005, 1-30. · Zbl 1070.14528 · doi:10.1090/conm/369/06801
[17] J.-P. Furter and S. Lamy, Normal subgroup generated by a plane polynomial automorphism , Transform. Groups 15 (2010), 577-610. · Zbl 1226.14080 · doi:10.1007/s00031-010-9095-4
[18] S. A. Gaifullin, Affine toric \(\operatorname{SL}(2)\)-embeddings , Sb. Math. 199 (2008), 319-339. · Zbl 1171.14036
[19] M. H. Gizatullin, Affine surfaces that can be augmented by a nonsingular rational curve , Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 778-802. · Zbl 0201.23503
[20] M. H. Gizatullin, Affine surfaces that are quasihomogeneous with respect to an algebraic group , Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 738-753.
[21] M. H. Gizatullin, Quasihomogeneous affine surfaces , Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1047-1071. · Zbl 0221.14023
[22] M. H. Gizatullin and V. I. Danilov, Examples of nonhomogeneous quasihomogeneous surfaces , Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 42-58. · Zbl 0304.14024
[23] M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles , J. Amer. Math. Soc. 2 (1989), 851-897. · Zbl 0686.32012 · doi:10.2307/1990897
[24] A. Grothendieck, Éléments de géométrie algébrique, II: Étude globale élémentaire de quelques classes de morphismes , Inst. Hautes Études Sci. Publ. Math. 8 (1961). IV: Étude locale des schémas et des morphismes de schémas III , 28 (1966).
[25] R. Hartshorne, Algebraic geometry , Grad. Texts in Math. 52 , Springer, New York, 1977. · Zbl 0367.14001
[26] Z. Jelonek, A hypersurface which has the Abhyankar-Moh property , Math. Ann. 308 (1997), 73-84. · Zbl 0870.14004 · doi:10.1007/s002080050065
[27] S. Kaliman and F. Kutzschebauch, Criteria for the density property of complex manifolds , Invent. Math. 172 (2008), 71-87. · Zbl 1143.32014 · doi:10.1007/s00222-007-0094-6
[28] S. Kaliman and F. Kutzschebauch, Algebraic volume density property of affine algebraic manifolds , Invent. Math. 181 (2010), 605-647. · Zbl 1211.14067 · doi:10.1007/s00222-010-0255-x
[29] S. Kaliman and F. Kutzschebauch, “On the present state of the Andersen-Lempert theory” in Affine Algebraic Geometry , CRM Proc. Lecture Notes 54 , Amer. Math. Soc., Providence, 2011, 85-122. · Zbl 1266.32028
[30] S. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group , Transform. Groups 4 (1999), 53-95. · Zbl 0956.14041 · doi:10.1007/BF01236662
[31] S. Kaliman, M. Zaidenberg, Miyanishi’s characterization of the affine 3-space does not hold in higher dimensions , Ann. Inst. Fourier (Grenoble) 50 (2000), 1649-1669. · Zbl 0971.14044 · doi:10.5802/aif.1803
[32] S. L. Kleiman, The transversality of a general translate , Compos. Math. 28 (1974), 287-297. · Zbl 0288.14014
[33] F. Knop, Mehrfach transitive Operationen algebraischer Gruppen , Arch. Math. (Basel) 41 (1983), 438-446. · Zbl 0557.14028 · doi:10.1007/BF01207571
[34] H. Kraft, Geometrische Methoden in der Invariantentheorie , Aspects Math. D1 , Vieweg, Braunschweig, 1984. · Zbl 0569.14003
[35] S. Kumar, Kac-Moody groups, their flag varieties, and representation theory , Progr. Math. 204 , Birkhäuser, Boston, 2002. · Zbl 1026.17030
[36] A. Liendo, Affine \(\mathbb{T}\)-varieties of complexity one and locally nilpotent derivations , Transform. Groups 15 (2010), 389-425. · Zbl 1209.14050 · doi:10.1007/s00031-010-9089-2
[37] A. Liendo, \(\mathbb{G}_a\)-actions of fiber type on affine \(\mathbb{T}\)-varieties , J. Algebra 324 (2010), 3653-3665. · Zbl 1219.14069 · doi:10.1016/j.jalgebra.2010.09.008
[38] L. Makar-Limanov, On groups of automorphisms of a class of surfaces , Israel J. Math. 69 (1990), 250-256. · Zbl 0711.14022 · doi:10.1007/BF02937308
[39] L. Makar-Limanov, “Locally nilpotent derivations on the surface \(xy=p(z)\)” in Proceedings of the Third International Algebra Conference (Tainan, 2002) , Kluwer, Dordrecht, 2003, 215-219. · Zbl 1057.13015
[40] A. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5 , to appear in Funct. Anal. Appl., preprint, [math.AG]. 1108.5841v1
[41] V. L. Popov, Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group , Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1038-1055. · Zbl 0258.14017
[42] V. L. Popov, Quasihomogeneous affine algebraic varieties of the group \(\operatorname{SL}(2)\) , Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 792-832.
[43] V. L. Popov, Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group , Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 566-609, 703.
[44] V.L. Popov, “On actions of \(\mathbf{G}_a\) on \(\mathbf{A}^n\)” in Algebraic Groups, Utrecht 1986 , Lecture Notes in Math. 1271 , Springer, Berlin, 1987, 237-242. · doi:10.1007/BFb0079241
[45] V.L. Popov, “Generically multiple transitive algebraic group actions” in Algebraic Groups and Homogeneous Spaces , Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 481-523. · Zbl 1135.14038
[46] V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties” in Affine Algebraic Geometry , CRM Proc. Lecture Notes 54 , Amer. Math. Soc., Providence, 2011, 289-312. · Zbl 1242.14044
[47] V. L. Popov and E. B. Vinberg, “Invariant theory” in Algebraic Geometry, IV , Encyclopaedia Math. Sci. 55 , Springer, Berlin, 1994, 123-278.
[48] C. Procesi, Lie Groups: An Approach through Invariants and Representations , Universitext, Springer, New York, 2007. · Zbl 1154.22001
[49] C. P. Ramanujam, A note on automorphism groups of algebraic varieties , Math. Ann. 156 (1964), 25-33. · Zbl 0121.16103 · doi:10.1007/BF01359978
[50] Z. Reichstein, On automorphisms of matrix invariants , Trans. Amer. Math. Soc. 340 (1993), no. 1, 353-371. · Zbl 0820.16021 · doi:10.2307/2154561
[51] Z. Reichstein, On automorphisms of matrix invariants induced from the trace ring , Linear Algebra Appl. 193 (1993), 51-74. · Zbl 0802.16017 · doi:10.1016/0024-3795(93)90271-O
[52] R. Rentschler, Opérations du groupe additif sur le plan affine , C. R. Acad. Sci. Paris Sér. A 267 (1968), 384-387. · Zbl 0165.05402
[53] I. R. Shafarevich, On some infinite-dimensional groups , Rend. Mat. e Appl. (5) 25 (1966), 208-212. · Zbl 0149.39003
[54] I. P. Shestakov and U. U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables , J. Amer. Math. Soc. 17 (2004), 197-227. · Zbl 1056.14085 · doi:10.1090/S0894-0347-03-00440-5
[55] D. Varolin, A general notion of shears, and applications , Michigan Math. J. 46 (1999), 533-553. · Zbl 0966.32013 · doi:10.1307/mmj/1030132478
[56] D. Varolin, The density property for complex manifolds and geometric structures, I , J. Geom. Anal. 11 (2001), 135-160. II , Internat. J. Math. 11 (2000), 837-847. · Zbl 0994.32019 · doi:10.1007/BF02921959
[57] J. Winkelmann, On automorphisms of complements of analytic subsets in \(\mathbf{C}^n\) , Math. Z. 204 (1990), 117-127. · Zbl 0701.32014 · doi:10.1007/BF02570862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.