×

Robust risk measurement and model risk. (English) Zbl 1294.91076

Summary: Financial risk measurement relies on models of prices and other market variables, but models inevitably rely on imperfect assumptions and estimates, creating model risk. Moreover, optimization decisions, such as portfolio selection, amplify the effect of model error. In this work, we develop a framework for quantifying the impact of model error and for measuring and minimizing risk in a way that is robust to model error. This robust approach starts from a baseline model and finds the worst-case error in risk measurement that would be incurred through a deviation from the baseline model, given a precise constraint on the plausibility of the deviation. Using relative entropy to constrain model distance leads to an explicit characterization of worst-case model errors; this characterization lends itself to Monte Carlo simulation, allowing straightforward calculation of bounds on model error with very little computational effort beyond that required to evaluate performance under the baseline nominal model. This approach goes well beyond the effect of errors in parameter estimates to consider errors in the underlying stochastic assumptions of the model and to characterize the greatest vulnerabilities to error in a model. We apply this approach to problems of portfolio risk measurement, credit risk, delta hedging and counterparty risk measured through credit valuation adjustment.

MSC:

91B30 Risk theory, insurance (MSC2010)
91Gxx Actuarial science and mathematical finance
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI

References:

[1] DOI: 10.1142/S0219024998000242 · Zbl 0979.91024 · doi:10.1142/S0219024998000242
[2] Avellaneda M., Int. J. Theor. Appl. Finance 4 (1) pp 1– (2000)
[3] DOI: 10.1080/135048697334827 · Zbl 1007.91015 · doi:10.1080/135048697334827
[4] DOI: 10.1080/13504869500000005 · doi:10.1080/13504869500000005
[5] DOI: 10.1016/S0304-405X(02)00131-9 · doi:10.1016/S0304-405X(02)00131-9
[6] Ben-Tal, A., Margalit, T. and Nemirovski, A., Robust modeling of multi-stage portfolio problems. InHigh Performance Optimization, edited by H. Frenk, K. Roos, T. Terlaky and S. Zhang, pp. 303–328, 2000 (Kluwer Academic: Dordrecht). · Zbl 1016.91055 · doi:10.1007/978-1-4757-3216-0_12
[7] DOI: 10.1016/S0304-405X(99)00049-5 · doi:10.1016/S0304-405X(99)00049-5
[8] DOI: 10.1016/j.cor.2006.02.011 · Zbl 1139.91333 · doi:10.1016/j.cor.2006.02.011
[9] DOI: 10.1002/fut.20530 · doi:10.1002/fut.20530
[10] DOI: 10.1142/S0219024902001511 · Zbl 1107.91324 · doi:10.1142/S0219024902001511
[11] DOI: 10.2307/2331391 · doi:10.2307/2331391
[12] DOI: 10.1111/j.1467-9965.2011.00503.x · Zbl 1280.91167 · doi:10.1111/j.1467-9965.2011.00503.x
[13] DOI: 10.1111/j.1467-9965.2011.00491.x · Zbl 1282.91354 · doi:10.1111/j.1467-9965.2011.00491.x
[14] Cont R., Comput. Finance 7 pp 1– (2004) · doi:10.21314/JCF.2004.123
[15] DOI: 10.1137/040616267 · Zbl 1110.49033 · doi:10.1137/040616267
[16] Draper D., J. R. Stat. Soc. Ser. B (Methodological) 57 (1) pp 45– (1995)
[17] DOI: 10.1287/opre.51.4.543.16101 · Zbl 1165.91397 · doi:10.1287/opre.51.4.543.16101
[18] DOI: 10.1016/j.jeconom.2011.02.017 · Zbl 1441.62700 · doi:10.1016/j.jeconom.2011.02.017
[19] DOI: 10.1287/opre.1040.0148 · Zbl 1165.65303 · doi:10.1287/opre.1040.0148
[20] DOI: 10.1287/moor.28.1.1.14260 · Zbl 1082.90082 · doi:10.1287/moor.28.1.1.14260
[21] DOI: 10.1142/S0219024999000182 · Zbl 1153.91503 · doi:10.1142/S0219024999000182
[22] DOI: 10.1142/S021902490200147X · Zbl 1107.91337 · doi:10.1142/S021902490200147X
[23] DOI: 10.1016/j.jet.2004.12.006 · Zbl 1152.93356 · doi:10.1016/j.jet.2004.12.006
[24] Hansen, L.P. and Sargent, T.J.Robustness, 2007 (Princeton University Press: Princeton, NJ).
[25] DOI: 10.1287/moor.1040.0129 · Zbl 1082.90123 · doi:10.1287/moor.1040.0129
[26] Jabbour C., J. Risk 11 (1) pp 57– (2008) · doi:10.21314/JOR.2008.182
[27] DOI: 10.1016/S0927-5398(03)00007-0 · doi:10.1016/S0927-5398(03)00007-0
[28] DOI: 10.1023/A:1009703431535 · Zbl 0937.91052 · doi:10.1023/A:1009703431535
[29] Meucci A., Fully Flexible Views: Theory Pract. Risk 21 (10) pp 97– (2008)
[30] Morini, M.Understanding and Managing Model Risk, 2011 (Wiley: Chichester). · doi:10.1002/9781118467312
[31] DOI: 10.1214/aoap/1019487360 · Zbl 1065.91030 · doi:10.1214/aoap/1019487360
[32] DOI: 10.1016/j.jempfin.2008.08.001 · doi:10.1016/j.jempfin.2008.08.001
[33] DOI: 10.1109/9.847720 · Zbl 0978.93083 · doi:10.1109/9.847720
[34] DOI: 10.1080/01621459.1997.10473615 · doi:10.1080/01621459.1997.10473615
[35] Rényi, A., On measures of entropy and information. InFourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561, 1961 (University of California Press).
[36] DOI: 10.1016/S0378-4266(02)00271-6 · doi:10.1016/S0378-4266(02)00271-6
[37] Shapiro, A., Dentcheva, D. and Ruszczyński, A.Lectures on Stochastic Programming: Modeling and Theory, vol. 9, 2009 (Society for Industrial and Applied Mathematics: Philadelphia, PA). · Zbl 1183.90005 · doi:10.1137/1.9780898718751
[38] Szechtman, R. and Glynn, P.W., Constrained Monte Carlo and the method of control variates. InProceedings of the 2001 Winter Simulation Conference, pp. 394–400, 2001 (IEEE Press: Piscataway, NJ). · doi:10.1109/WSC.2001.977308
[39] DOI: 10.1007/BF01016429 · Zbl 1082.82501 · doi:10.1007/BF01016429
[40] DOI: 10.1287/opre.1080.0684 · Zbl 1233.91254 · doi:10.1287/opre.1080.0684
[41] Zhu S., GARP Risk Rev. 37 pp 16– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.