×

Global stabilization of switched nonlinear systems in non-triangular form and its application. (English) Zbl 1293.93636

Summary: This paper investigates the problem of global stabilization of switched nonlinear systems in non-triangular form whose subsystems are not assumed to be asymptotically stabilizable. The use of multiple Lyapunov functions (MLFs) method permits removal of a common restriction in which the nonlinear structures in the non-switched nonlinear systems are restricted to a triangular structure when applying backstepping. Using the MLFs method and the adding a power integrator technique, we design state-feedback controllers for individual subsystems and construct a switching law to guarantee asymptotic stability of the closed-loop switched system. As an application of the proposed design method, the global stabilization problem of a continuously stirred tank reactor (CSTR) system and two inverted pendulums which cannot be handled by the existing methods is investigated.

MSC:

93D20 Asymptotic stability in control theory
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93D30 Lyapunov and storage functions
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Adesina, A. A.; Adewale, K. E.P., Steady-state cubic autocatalysis in an isothermal stirred tank, Ind. Eng. Chem. Res., 30, 430-434 (1991)
[2] Alvarez-Ramirez, J., Observers for a class of continuous tank reactors via temperature measurement, Chem. Eng. Sci., 50, 1393-1399 (1995)
[3] Alvarez-Ramirez, J.; Femat, R., Robust PI stabilization of a class of chemical reactors, Syst. Control Lett., 38, 219-225 (1999) · Zbl 0985.93040
[4] Branicky, M. S., Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Autom. Control, 43, April (4), 475-482 (1998) · Zbl 0904.93036
[5] Bacciotti, A., Stabilization by means of state space depending switching rules, Syst. Control Lett., 53, 195-201 (2004) · Zbl 1157.93480
[6] Cheng, D.; Guo, L.; Lin, Y.; Wang, Y., Stabilization of switched linear systems, IEEE Trans. Autom. Control, 50, May (5), 661-666 (2005) · Zbl 1365.93389
[7] Cao, M.; Morse, A. S., Dwell-time switching, Syst. Control Lett., 59, 57-65 (2010) · Zbl 1186.93005
[8] Colaneri, P.; Geromel, J. C.; Astolfi, A., Stabilization of continuous time switched nonlinear systems, Syst. Control Lett., 57, 95-103 (2008) · Zbl 1129.93042
[9] Chen, Z.; Huang, J., Global robust stabilization of cascaded polynomial systems, Syst. Control Lett., 47, 445-453 (2002) · Zbl 1106.93336
[10] Dashkovskiy, S.; Pavlichkov, S., Global uniform input-to-state stabilization of large-scale interconnections of MIMO generalized triangular form switched systems, Math. Control Signals Syst., 24, 135-168 (2012) · Zbl 1238.93095
[11] El-Farra, N. H.; Mhaskar, P.; Christofides, P. D., Output feedback control of switched nonlinear systems using multiple Lyapunov functions, Syst. Control Lett., 54, 1163-1182 (2005) · Zbl 1129.93497
[12] Feng, W.; Zhang, J., Input-to-state stability of switched nonlinear systems, Sci. China Ser. F Inf. Sci., 51, 12, 1992-2004 (2008) · Zbl 1291.93284
[13] Freeman, R. A.; Kokotović, P. V., Robust Control of Nonlinear Systems (1996), Birkhauser: Birkhauser Boston · Zbl 0863.93075
[14] Fissore, D., Robust control in presence of parametric uncertaintiesobserver-based feedback controller design, Chem. Eng. Sci., 63, 1890-1900 (2008)
[15] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems, IEEE Control Syst. Mag., 29, 28-93 (2009) · Zbl 1395.93001
[16] Ghommam, J.; Mnif, F.; Benali, A.; Derbel, N., Asymptotic backstepping stabilization of an underactuated surface vessel, IEEE Trans. Control Syst. Technol., 14, November (6), 1150-1157 (2006)
[17] Ge, S. S.; Hang, C. C.; Zhang, T., Nonlinear adaptive control using neural networks and its application to CSTR systems, J. Process Control, 9, 313-323 (1998)
[18] Hespanha, J. P., Root-mean-square gains of switched linear systems, IEEE Trans. Autom. Control, 48, November (11), 2040-2045 (2003) · Zbl 1364.93213
[19] Hong, Y.; Wang, J.; Cheng, D., Adaptive finite-time control of nonlinear systems with parameteric uncertainty, IEEE Trans. Autom. Control, 51, May (5), 858-862 (2006) · Zbl 1366.93290
[20] Han, T.; Ge, S. S.; Lee, T., Adaptive neural control for a class of switched nonlinear systems, Syst. Control Lett., 58, 109-118 (2009) · Zbl 1155.93414
[21] Krstić, M.; Kanellakopoulos, I.; Kokotović, P., Nonlinear and Adaptive Control Design (1995), Wiley, Interscience · Zbl 0763.93043
[22] Kravaris, C.; Palanki, S., Robust nonlinear state feedback under structured uncertainty, AIChE J., 34, 1119-1127 (1988)
[23] Korobov, V. I.; Pavlichkov, S. S., Global properties of the triangular systems in the singular case, J. Math. Anal. Appl., 342, 1426-1439 (2008) · Zbl 1141.93023
[24] Liberzon, D., Switching in Systems and Control (2003), Birkhauser: Birkhauser Boston, MA · Zbl 1036.93001
[25] Long, L.; Zhao, J., Global stabilization for a class of switched nonlinear feedforward systems, Syst. Control Lett., 60, 734-738 (2011) · Zbl 1226.93114
[26] Long, L.; Zhao, J., \(H_\infty\) control of switched nonlinear systems in p-normal form using multiple Lyapunov functions, IEEE Trans. Autom. Control, 57, May (5), 1285-1291 (2012) · Zbl 1369.93253
[29] Lu, W.; Doyle, J., \(H_\infty\) control of nonlinear systemsa convex characterization, IEEE Trans. Autom. Control, 40, September (9), 1668-1675 (1995) · Zbl 0836.93014
[30] McClamroch, N. H.; Kolmanovsky, I., Performance benefits of hybrid control design for linear and nonlinear systems, Proc. IEEE, 88, July (7), 1083-1096 (2000)
[31] Mojica-Nava, E.; Quijano, N.; Rakoto-Ravalontsalama, N.; Gauthier, A., A polynomial approach for stability analysis of switched systems, Syst. Control Lett., 59, 98-104 (2010) · Zbl 1186.93035
[32] Ma, R.; Zhao, J., Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings, Automatica, 46, 1819-1823 (2010) · Zbl 1218.93075
[33] Parulekar, S. J., Modal analysis and optimization of isothermal autocatalytic reactions, Chem. Eng. Sci., 53, 2379-2394 (1998)
[34] Pavlichkov, S. S.; Ge, S. S., Global stabilization of the generalized MIMO triangular systems with singular input-output links, IEEE Trans. Autom. Control, 54, August (8), 1794-1806 (2009) · Zbl 1367.93532
[35] Qian, C.; Lin, W., Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, Syst. Control Lett., 42, 185-200 (2001) · Zbl 0974.93050
[36] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Trans. Autom. Control, 46, July (7), 1061-1079 (2001) · Zbl 1012.93053
[37] Raptis, I. A.; Valavanis, K. P.; Moreno, W. A., A novel nonlinear backstepping controller design for helicopters using the rotation matrix, IEEE Trans. Control Syst. Technol., 19, March (2), 465-473 (2011)
[38] Sepulchre, R.; Janković, M.; Kokotović, P., Constructive Nonlinear Control (1996), Springer-Verlag: Springer-Verlag London · Zbl 1067.93500
[39] Schwartz, C. A.; Maben, E., A minimum energy approach to switching control for mechanical systems, (Morse, A. S., Control Using Logic-Based Switching (1997), Springer-Verlag: Springer-Verlag New York), 142-150 · Zbl 0875.93019
[41] Sakamoto, N.; van der Schaft, A. J., Analytical approximation methods for the stabilizing solution of the Hamilton-Jacobi equation, IEEE Trans. Autom. Control, 53, November (10), 2335-2350 (2008) · Zbl 1367.93535
[42] Spooner, J. T.; Passino, K. M., Decentralized adaptive control of nonlinear systems using radial basis neural networks, IEEE Trans. Autom. Control, 44, November (11), 2050-2057 (1999) · Zbl 1136.93363
[43] Salehi, S.; Shahrokhi, M., Adaptive fuzzy backstepping approach for temperature control of continuous stirred tank reactors, Fuzzy Sets Syst., 160, 1804-1818 (2009) · Zbl 1175.93133
[44] Viel, F.; Jadot, F.; Bastin, G., Robust feedback stabilization of chemical reactors, IEEE Trans. Autom. Control, 42, April (4), 473-481 (1997) · Zbl 0878.93049
[45] Wu, J., Stabilizing controllers design for switched nonlinear systems in strict-feedback form, Automatica, 45, 1092-1096 (2009) · Zbl 1162.93030
[46] Yazdi, M. B.; Jahed-Motlagh, M. R., Stabilization of a CSTR with two arbitrarily switching modes using model state feedback linearization, Chem. Eng. J., 155, 838-843 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.