×

Robust stabilisation of discrete-time time-varying linear systems with Markovian switching and nonlinear parametric uncertainties. (English) Zbl 1290.93154

Summary: In this paper, the problem of the robustness of the stability of a discrete-time linear stochastic system is addressed. The nominal plant is described by a discrete-time time-varying linear system subject to random jumping according with a non-homogeneous Markov chain with a finite number of states. The class of admissible uncertainties consists of multiplicative white noise type perturbations with unknown intensity. It is assumed that the intensity of white noise type perturbations is modeled by unknown nonlinear functions subject to linear growth conditions. The class of admissible controls consists of stabilizing state feedback control laws. We show that the best robustness performance is achieved by the stability provided by a state feedback design based on the stabilizing solution of a suitable discrete-time Riccati-type equation.

MSC:

93D21 Adaptive or robust stabilization
93E15 Stochastic stability in control theory
93C55 Discrete-time control/observation systems
60J75 Jump processes (MSC2010)
93C41 Control/observation systems with incomplete information
60H40 White noise theory
Full Text: DOI

References:

[1] Boukas E.K., Stochastic switching systems (2005) · Zbl 1108.93074
[2] DOI: 10.1007/b138575 · doi:10.1007/b138575
[3] DOI: 10.1007/978-3-642-34100-7 · Zbl 1277.60003 · doi:10.1007/978-3-642-34100-7
[4] DOI: 10.1109/TSP.2011.2135854 · Zbl 1391.93234 · doi:10.1109/TSP.2011.2135854
[5] Dragan V., Mathematical methods in robust control of linear stochastic systems (2006) · Zbl 1101.93002
[6] DOI: 10.1007/978-1-4419-0630-4 · Zbl 1183.93001 · doi:10.1007/978-1-4419-0630-4
[7] DOI: 10.1016/0167-6911(92)90036-R · Zbl 0765.93077 · doi:10.1016/0167-6911(92)90036-R
[8] Hinrichsen D., Mathematical systems theory I, modelling, state space analysis, stability and robustness (2005) · Zbl 1074.93003
[9] DOI: 10.1080/00207721.2011.598958 · Zbl 1307.93141 · doi:10.1080/00207721.2011.598958
[10] Levit M.V., Applied Mathematics and Mechanics, 1 pp 142– (1972)
[11] DOI: 10.1002/rnc.1699 · Zbl 1261.93076 · doi:10.1002/rnc.1699
[12] DOI: 10.1080/00207179.2011.627379 · Zbl 1236.93052 · doi:10.1080/00207179.2011.627379
[13] Morozan T., Revue Roumaine de Mathematiques Pures et Appliquees, 2 pp 255– (1973)
[14] DOI: 10.1080/17442509508834010 · Zbl 0858.60055 · doi:10.1080/17442509508834010
[15] DOI: 10.1080/07362999708809483 · Zbl 0898.93034 · doi:10.1080/07362999708809483
[16] DOI: 10.1002/rnc.1571 · Zbl 1207.93099 · doi:10.1002/rnc.1571
[17] DOI: 10.1080/00207721.2011.577247 · Zbl 1307.93316 · doi:10.1080/00207721.2011.577247
[18] DOI: 10.1080/00207721.2011.600472 · Zbl 1307.93445 · doi:10.1080/00207721.2011.600472
[19] DOI: 10.1007/s00498-010-0046-3 · Zbl 1248.93172 · doi:10.1007/s00498-010-0046-3
[20] DOI: 10.1109/TAC.2010.2046114 · Zbl 1368.93778 · doi:10.1109/TAC.2010.2046114
[21] DOI: 10.1109/TAC.2010.2073311 · Zbl 1368.93732 · doi:10.1109/TAC.2010.2073311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.