×

Linear complementarity as absolute value equation solution. (English) Zbl 1288.90109

Summary: We consider the linear complementarity problem (LCP): \(Mz+q\geq 0\), \(z\geq 0\), \(z^\prime(Mz+q)=0\) as an absolute value equation (AVE): \((M+I)z+q=|(M-I)z+q|\), where \(M\) is an \(n\times n\) square matrix and \(I\) is the identity matrix. We propose a concave minimization algorithm for solving (AVE) that consists of solving a few linear programs, typically two. The algorithm was tested on 500 consecutively generated random solvable instances of the LCP with \(n=10,50,100,500\) and 1,000. The algorithm solved 100% of the test problems to an accuracy of \(10^{-8}\) by solving 2 or less linear programs per LCP problem.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Software:

CPLEX; Matlab
Full Text: DOI

References:

[1] Chung, S.-J.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60, 393–399 (1989) · Zbl 0632.90072 · doi:10.1007/BF00940344
[2] Cottle, R.W., Dantzig, G.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968) · Zbl 0155.28403 · doi:10.1016/0024-3795(68)90052-9
[3] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)
[4] ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual. http://www.ilog.com/products/cplex/ (2003)
[5] Mangasarian, O. L.: Solution of general linear complementarity problems via nondifferentiable concave minimization. Acta Mathematica Vietnamica, 22(1):199–205. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-10.ps (1997) · Zbl 0895.90167
[6] Mangasarian, O. L.: Absolute value equation solution via concave minimization. Optimization Lett. 1(1), 3–8. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-02.pdf (2007) · Zbl 1149.90098
[7] Mangasarian, O. L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-04.ps (2007) · Zbl 1278.90386
[8] Mangasarian, O. L.: A generalized Newton method for absolute value equations. Technical Report 08–01, Data Mining Institute, Computer Sciences Department, University of Wisconsin, May 2008. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/08-01.pdf . Optimization Lett. 3(1), 2009, 101–108. Online version: http://www.springerlink.com/content/c076875254r7tn38/ · Zbl 1154.90599
[9] Mangasarian, O. L.: Absolute value equation solution via dual complementarity. Technical report, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, September 2011. Optimization Lett. 7(4), 625–63. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/11-03.pdf (2013) · Zbl 1269.90116
[10] Mangasarian, O. L.: Primal-dual bilinear programming solution of the absolute value equation. Technical report, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, February 2011. Optimization Lett. 6(7), 1527–1533. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/11-01.pdf (2012) · Zbl 1259.90065
[11] Mangasarian, O. L.: Absolute value equation solution via linear programming. Technical Report 13–01, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, February. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/13-01.pdf (2013) · Zbl 1269.90116
[12] Mangasarian, O. L., Meyer, R. R.: Absolute value equations. Linear Algebra Appl. 419, 359–367. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-06.pdf (2006) · Zbl 1172.15302
[13] MATLAB. User’s Guide. The MathWorks, Inc., Natick, pp. 1994–2006. http://www.mathworks.com
[14] Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Helderman-Verlag, Berlin (1988) · Zbl 0634.90037
[15] Polyak, B.T.: Introduction to Optimization. Optimization Software, Inc. Publications Division, New York (1987) · Zbl 0708.90083
[16] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.