×

Thin-disk models in an integrable Weyl-Dirac theory. (English) Zbl 1288.83037

Summary: We construct a class of static, axially symmetric solutions representing razor-thin disks of matter in the Integrable Weyl-Dirac theory proposed in M. Israelit [ “Matter Creation by Geometry in an Integrable Weyl-Dirac Theory”, Found. Phys. 29, No. 8, 1303–1322 (1999; doi:10.1023/A:1018811915703)]. The main differences between these solutions and the corresponding general relativistic one are analyzed, focusing on the behavior of physical observables (rotation curves of test particles, density and pressure profiles). We consider the case in which test particles move along Weyl geodesics. The same rotation curve can be obtained from many different solutions of the Weyl-Dirac theory, although some of these solutions present strong qualitative differences with respect to the usual general relativistic model (such as the appearance of a ring-like density profile). In particular, for typical galactic parameters all rotation curves of the Weyl-Dirac model present Keplerian fall-off. As a consequence, we conclude that a more thorough analysis of the problem requires the determination of the gauge function \(\beta\) on galactic scales, as well as restrictions on the test-particle behavior under the action of the additional geometrical fields introduced by this theory.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C15 Exact solutions to problems in general relativity and gravitational theory
83C10 Equations of motion in general relativity and gravitational theory
85A05 Galactic and stellar dynamics

References:

[1] Binney, J., Tremaine, S.: Galactic Dynamics, 2nd ed. Princeton University Press, Princeton (2008) · Zbl 1136.85001
[2] Karas, V., Huré, J.-M., Semerák, O.: Gravitating discs around black holes. Class. Quantum Gravity 21, R1 (2004) · Zbl 1054.83002 · doi:10.1088/0264-9381/21/7/R01
[3] Semerák, O.: Towards Gravitating Discs Around Stationary Black Holes. arXiv:gr-qc/0204025 · Zbl 1054.83002
[4] Bonnor, W.A., Sackfield, A.: The interpretation of some spheroidal metrics. Comm. Math. Phys. 8, 338 (1968) · Zbl 0159.29406 · doi:10.1007/BF01646273
[5] Morgan, T., Morgan, L.: The gravitational field of a disk. Phys. Rev. 183, 1097 (1969) · doi:10.1103/PhysRev.183.1097
[6] Morgan, L., Morgan, T.: Gravitational field of shells and disks in general relativity. Phys. Rev. D 2, 2756 (1970) · Zbl 1227.83027 · doi:10.1103/PhysRevD.2.2756
[7] Bičák, J., Lynden-Bell, D., Katz, J.: Relativistic disks as sources of static vacuum spacetimes. Phys. Rev. D 47, 4334 (1993) · doi:10.1103/PhysRevD.47.4334
[8] Vogt, D., Letelier, P.S.: Exact general relativistic perfect fluid disks with halos. Phys. Rev. D 68, 084010 (2003) · doi:10.1103/PhysRevD.68.084010
[9] Coimbra-Araújo, C.H., Letelier, P.S.: A thin disk in higher-dimensional space-time and dark matter interpretation. Phys. Rev. D 76, 043522 (2007) · doi:10.1103/PhysRevD.76.043522
[10] Miyamoto, M., Nagai, R.: Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn. 27, 533 (1975)
[11] González, G.A., Letelier, P.S.: Exact general relativistic thick disks. Phys. Rev. D 69, 044013 (2004) · doi:10.1103/PhysRevD.69.044013
[12] Vogt, D., Letelier, P.S.: Relativistic models of galaxies. Mon. Not. R. Astron. Soc. 363, 268-284 (2005) · doi:10.1111/j.1365-2966.2005.09436.x
[13] Coimbra-Araújo, C.H., Letelier, P.S.: Gravity with extra dimensions and dark matter interpretation: phenomenological example via Miyamoto-Nagai galaxy. Braz. J. Phys. 42, 100 (2012) · doi:10.1007/s13538-012-0059-0
[14] Begeman, K.G.: HI Rotation Curves of Spiral Galaxies. PhD. Thesis, Rijksuniversiteit Groningen (1987) · JFM 42.0298.02
[15] Begeman, K.G.: HI rotation curves of spiral galaxies—I.NGC3198. Astron. Astrophys. 223, 47-60 (1989)
[16] de Blok, W.J.G., McGaugh, S.S., Rubin, V.: High-resolution rotation curves of Low Surface Brightness galaxies—II. Mass models. Astrophys. J. 122, 2396-2427 (2001)
[17] de Blok, W.J.G., McGaugh, S.S.: The dark and visible matter content of low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 290, 533 (1997) · doi:10.1093/mnras/290.3.533
[18] Zurita, A., Relaño, M., Beckman, J.E., Knapen, J.H.: Ionized gas kinematics and massive star formation in NGC 1530. Astron. Astrophys. 413, 73 (2004) · doi:10.1051/0004-6361:20031049
[19] de Blok, W.J.G.: The core-cusp problem. Adv. Astron. 2010, 789293 (2010)
[20] Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996) · doi:10.1086/177173
[21] Einasto, J.: Dark Matter. arXiv:0901.0632v2 [astro-ph.CO] · Zbl 1094.85006
[22] Sanders, R.H.: The Dark Matter Problem: A Historical Perspective. Cambridge University Press, Cambridge (2010) · Zbl 1204.85004
[23] Rodrigues, D.C., Letelier, P.S., Shapiro, I.L.: Galaxy rotation curves from general relativity with renormalization group corrections. JCAP 04, 020 (2010) · doi:10.1088/1475-7516/2010/04/020
[24] Brownstein, J.R., Moffat, J.W.: Galaxy rotation curves without nonbaryonic dark matter. Astrophys. J. 636, 721-741 (2006) · doi:10.1086/498208
[25] Sanders, R.H., McGaugh, S.S.: Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 40, 263-317 (2002) · doi:10.1146/annurev.astro.40.060401.093923
[26] Weyl, H.: Gravitation and electricity. In: O’Rafeartaigh (ed.) The Dawning of Gauge Theory, pp. 24-37. Princeton University Press, Princeton (1997)
[27] Dirac, P.A.M.: Long range forces and broken symmetries. Proc. R. Soc. Lond. A 333, 403-418 (1973)
[28] Canuto, V., Adams, P.J., Hsieh, S.-H., Tsiang, E.: Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 16(6), 1643-1663 (1977) · doi:10.1103/PhysRevD.16.1643
[29] Israelit, M.: Matter creation by geometry in an integrable Weyl-Dirac theory. Found. Phys. 29, 1303 (1999) · doi:10.1023/A:1018811915703
[30] Carroll, R.: Remarks on Weyl Geometry and Quantum Mechanics. arXiv:0705.3921v3 [gr-qc]
[31] Israelit, M.: Primary matter creation in a Weyl-Dirac cosmological model. Found. Phys. 32, 295 (2002) · doi:10.1023/A:1014465327475
[32] Israelit, M.: Quintessence and dark matter created by Weyl-Dirac geometry. Found. Phys. 32, 945 (2002) · Zbl 1011.83028 · doi:10.1023/A:1016063430245
[33] Israelit, M.: A Weyl-Dirac cosmological model with DM and DE. Gen. Relativ. Gravit. 43, 751 (2011) · Zbl 1213.83148 · doi:10.1007/s10714-010-1092-3
[34] Mirabotalebi, S., Jalalzadeh, S., Sadegh Movahed, M., Sepangi, H.R.: Weyl-Dirac predictions on galactic scales. Mon. Not. R. Astron. Soc. 385, 986 (2008) · doi:10.1111/j.1365-2966.2008.12904.x
[35] Letelier, P.S.: Stability of circular orbits of particles moving around black holes surrounded by axially symmetric structures. Phys. Rev. D 68, 104002 (2003) · doi:10.1103/PhysRevD.68.104002
[36] Folland, G.B.: Weyl manifolds. J. Differ. Geom. 4, 145 (1970) · Zbl 0195.23904
[37] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983) · Zbl 0531.53051
[38] Buchdahl, H.A.: Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev. 115, 1325 (1959) · Zbl 0087.42405 · doi:10.1103/PhysRev.115.1325
[39] Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General relativity. Cambridge University Press, Cambridge (2009) · Zbl 1184.83003
[40] Taub, A.H.: Space-times with distribution-valued curvature tensors. J. Math. Phys. 21, 1423 (1980) · doi:10.1063/1.524568
[41] Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th ed. Harcourt Academic Press, Burlington (2001) · Zbl 0970.00005
[42] Jackson, J.D.: Classical Electrodynamics, 3rd ed. Wiley, New York (1999) · Zbl 0920.00012
[43] Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics vol. 6, 2nd ed. Elsevier, Amsterdam (1987) · Zbl 0655.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.