×

Pseudodifferential \(p\)-adic vector fields and pseudodifferentiation of a composite \(p\)-adic function. (English) Zbl 1288.47048

The authors study the transformation of \(p\)-adic pseudodifferential operators under certain \(p\)-adic mappings corresponding to automorphisms of the tree of balls in \(p\)-adic spaces. An important tool is provided by \(p\)-adic complex-valued wavelets introduced by S. V. Kozyrev [Izv. Math. 66, No. 2, 367–376 (2002; Zbl 1016.42025)]; for further developments, see [S. Albeverio, A. Yu. Khrennikov and V. M.Shelkovich, Theory of \(p\)-adic distributions. Linear and nonlinear models. London Mathematical Society Lecture Note Series 370. Cambridge: Cambridge University Press (2010; Zbl 1198.46001)].
Since \(p\)-adic wavelets are eigenfunctions of \(p\)-adic pseudodifferential operators, the latter can be interpreted as local operators on the wavelet fiber bundle on the tree of balls \(\mathcal T (\mathbb Q_p)\). In this sense, such an operator can be called a \(p\)-adic vector field. For a natural group of mappings \(\mathbb Q_p\to \mathbb Q_p\), the orbit of its action on wavelets is shown to be a tight frame. A formula of commutation with Vladimirov’s fractional differentiation operator is found.
For the multi-dimensional case, the authors introduce a natural subgroup of the group of automorphisms of the tree of balls, and also find a transformation formula for appropriate pseudodifferential operators. In this case, too, a fiber bundle interpretation clarifies the geometric meaning of the constructions.

MSC:

47G30 Pseudodifferential operators
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
35S05 Pseudodifferential operators as generalizations of partial differential operators
26E30 Non-Archimedean analysis
05E18 Group actions on combinatorial structures
47S10 Operator theory over fields other than \(\mathbb{R}\), \(\mathbb{C}\) or the quaternions; non-Archimedean operator theory

References:

[1] V. S. Vladimirov, I. V. Volovich, Ye. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994). · Zbl 0812.46076
[2] A. N. Kochubei, Pseudo-Differential Equations and Stochastics over non-Archimedean Fields (Marcel Dekker, New York, Basel, 2001). · Zbl 0984.11063
[3] S. V. Kozyrev, ”Wavelet theory as p-adic spectral analysis,” Izvestiya: Mathematics 66(2), 367–376 (2002). arXiv:math-ph/0012019 · Zbl 1016.42025 · doi:10.1070/IM2002v066n02ABEH000381
[4] S. V. Kozyrev, ”p-Adic pseudodifferential operators and p-adic wavelets,” Theor. Math. Phys. 138(3), 322–332 (2004). · Zbl 1178.42039 · doi:10.1023/B:TAMP.0000018449.72502.6f
[5] A. Yu. Khrennikov and S. V. Kozyrev, ”Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izvestiya: Mathematics 69(5), 989–1003 (2005); arXiv:math-ph/0412062. · Zbl 1111.35141 · doi:10.1070/IM2005v069n05ABEH002284
[6] A. Yu. Khrennikov and S. V. Kozyrev, ”Wavelets on ultrametric spaces,” Appl. Comp. Harm. Anal. 19, 61–76 (2005). · Zbl 1079.42028 · doi:10.1016/j.acha.2005.02.001
[7] S. V. Kozyrev, ”Wavelets and spectral analysis of ultrametric pseudodifferenial operators,” Sbornik Mathematics 198(1), 103–126 (2007); arXiv:math-ph/0412082. · doi:10.4213/sm1432
[8] S. Albeverio and S. V. Kozyrev, ”Multidimensional basis of p-adic wavelets and representation theory,” p-Adic Numbers, Ultrametric Analysis and Applications 1(3), 181–189 (2009); arXiv:0903.0461. · Zbl 1187.42030 · doi:10.1134/S2070046609030017
[9] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, ”On p-adic mathematical physics,” p-Adic Numbers, Ultrametric Analysis and Applications 1(1), 1–17 (2009); arXiv:0904.4205. · Zbl 1187.81004 · doi:10.1134/S2070046609010014
[10] A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological and Anomalous Phenomena, Series in Fundamental Theories of Physics (Kluwer, Dordrecht, 2004).
[11] G. I. Olshansky, ”Classification of irreducible representations of groups of automorphisms of Bruhat-Tits trees,” Func. Anal. Appl. 11(1), 26–34 (1997). · Zbl 0371.22014 · doi:10.1007/BF01135529
[12] Yu. A. Neretin, ”On combinatorial analogs of the group of diffeomorphisms of the circle,” Izvestiya Mathematics 41(2), 337 (1993). · Zbl 0789.22036 · doi:10.1070/IM1993v041n02ABEH002264
[13] J.-P. Serre, Arbres, amalgames, SL(2), Ast érisque 46 (Societé mathématique de France, Paris, 1977).
[14] J.-P. Serre, Trees (Springer, 1980 and 2003).
[15] P. Cartier, ”Harmonic analysis on trees,” in Harmonic Analysis on Homogeneous Spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), pp. 419–424 (Amer. Math. Soc., Providence, R.I., 1973).
[16] P. Cartier, ”Representations of p-adic groups: a survey,” in Automorphic Forms, Representations and L-Functions, (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 111–155, (Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979).
[17] W. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis (Cambridge Univ. Press, 1984). · Zbl 0553.26006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.