×

On sequences of rational interpolants of the exponential function with unbounded interpolation points. (English) Zbl 1283.30068

This paper deals with rational approximants of the exponential function \(e^z\), a subject of interest in function theory and in some problems of applied mathematics. Given a triangular sequence of complex interpolation points \(\{z_j^{(2n)}\}_{j=0}^{2n}\), consider the associated rational functions \(r_n=p_n/q_n\), with \(p_n\), \(q_n\) polynomials of degree at most \(n\) such that as \(z\rightarrow z_j^{(2n)}\), \(j=0,\dots, 2n\),
\[ e_n(z):=p_n(z) e^{-z/2}+ q_n(z) e^{z/2}=O\bigg(\prod_{j=0}^{2n}\big(z-z_j^{(2n)}\big)\bigg) . \] The main result is the following.
Theorem1.1. Let \(\{z_j^{(2n)}\}_{j=0}^{2n}\) be a triangular family such that
\[ \rho_n:=\max_{j=0,\dots,2n}|z_j^{(2n)}| \leq c n^{1-\alpha},\qquad n\in\mathbb N, \] for some \(c>0\) and \(\alpha\in(0,1]\). Let \(p_n,q_n\) be polynomials satisfying (1). Then
i) No zeros and poles of \(r_n\) lie in the disk \(D(0,\rho_n)\) for \(n\) large. In particular, as \(z\rightarrow z_j^{(2n)}\), \(j=0,\dots, 2n\),
\[ e^z+r_n(z)=O\bigg(\prod_{j=0}^{2n}\big(z-z_j^{(2n)}\big)\bigg) . \]
ii) Assume \(q_n\) is normalised so that \(q_n(0)=1\). As \(n\to\infty\), \[ p_n(z)\rightarrow e^{z/2},\qquad q_n(z)\rightarrow e^{-z/2},\qquad r_n(z)\rightarrow -e^{z} \] locally uniformly in \(\mathbb C\).
iii) For large \(n\)
\[ e^z+r_n(z)=(-1)^n\bigg(\frac{e c_n}{4n}\bigg)^{2n+1} e^{z-1} O\bigg(\prod_{j=0}^{2n}\big(z-z_j^{(2n)}\big)\bigg) \bigg(1+ O\Big(\frac 1{n^{\alpha}}\Big)\bigg) \] locally uniformly in \(\mathbb C\), where \(c_n\) is a constant that dependes only on the interpolation points and such that
\[ c_n=1+ O\bigg(\Big(\frac{\rho_n}n\Big)^2\bigg),\qquad n\to\infty. \] Similar results for the case where \(\{\rho_n\}_n\) grows at most logarithmicly in \(n\) were given in [F. Wielonsky, J. Approximation Theory 131, No. 1, 100–148 (2004; Zbl 1069.30062)]. The proof of Theorem 1.1 follows the same scheme of this previous case: first the rational interpolants are characterised in terms of a solution of a matrix Riemann-Hilbert problem and then a steepest descent analysis of the Riemann-Hilbert problem is performed.
The second part of the paper describes the limit distributions of the zeros of the scaled polynomials \(P_n(z)=p_n(2nz)\) and \(Q_n(z)=q_n(2nz)\). Given a polynomial \(P\) of degree \(n\), let \(\nu_P=\frac 1n\sum_{p(z)=0}\delta_z\) be the normalised zero counting measure.
Theorem 1.3. As \(n\to\infty\), \[ \nu_{P_n} \longrightarrow \frac 1{i\pi}\frac{(\sqrt{s^2+1})_+}{s} ds, \qquad \nu_{Q_n} \longrightarrow \frac 1{i\pi}\frac{(\sqrt{(-s)^2+1})_+}{s} ds, \] where the convergence is in the sense of weak\(^*\)-convergence of measures. (Here the two square roots indicate the two different branches).
A final section is devoted to numerical experiments showing how the distributions of zeros and poles of the interpolants may be modified when considering different configurations of interpolation points with modulus of order \(n\).

MSC:

30E10 Approximation in the complex plane
30E05 Moment problems and interpolation problems in the complex plane
41A20 Approximation by rational functions
41A05 Interpolation in approximation theory

Citations:

Zbl 1069.30062

References:

[1] Baratchart, L.; Saff, E. B.; Wielonsky, F., Rational interpolation of the exponential function, Canad. J. Math., 47, 1121-1147 (1995) · Zbl 0852.41013
[2] Borwein, P. B., Rational interpolation to \(e^x\), J. Approx. Theory, 35, 142-147 (1982) · Zbl 0487.41018
[3] Borwein, P. B., Rational interpolation to \(e^x\), II, SIAM J. Math. Anal., 16, 656-662 (1985) · Zbl 0604.41016
[5] Deift, P.; Its, A.; Krasovsky, I., Asymptotics for the Airy-kernel determinant, Comm. Math. Phys., 278, 643-678 (2008) · Zbl 1167.15005
[6] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math., 52, 1335-1425 (1999) · Zbl 0944.42013
[7] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math., 52, 1491-1552 (1999) · Zbl 1026.42024
[8] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems, asymptotics for the MKdV equation, Ann. of Math., 137, 295-368 (1993) · Zbl 0771.35042
[9] Driver, K. A.; Temme, N. M., Zero and pole distribution of diagonal Padé approximants to the exponential function, Quaest. Math., 22, 7-17 (1999) · Zbl 0952.41013
[10] Gonchar, A. A.; Rakhmanov, E. A., Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sbornik, 62, 305-348 (1989) · Zbl 0663.30039
[11] Kuijlaars, A.; Stahl, H.; Van Assche, W.; Wielonsky, F., Type II Hermite-Padé approximation to the exponential function, J. Comput. Appl. Math., 207, 227-244 (2007) · Zbl 1119.41010
[12] Kuijlaars, A. B.J.; Van Assche, W.; Wielonsky, F., Quadratic Hermite-Padé approximation to the exponential function: a Riemann-Hilbert approach, Constr. Approx., 21, 351-412 (2005) · Zbl 1084.41007
[13] Nuttall, J., Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory, 42, 299-386 (1984) · Zbl 0565.41015
[14] Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields (1997), Springer-Verlag: Springer-Verlag New-York · Zbl 0881.31001
[15] Saff, E. B.; Varga, R. S., On the zeros and poles of Padé approximants to \(e^z\), Numer. Math., 25, 1-14 (1975) · Zbl 0322.41010
[16] Saff, E. B.; Varga, R. S., On the zeros and poles of Padé approximants to \(e^z\), (Saff, E. B.; Varga, R. S., II, Padé and Rational Approximations: Theory and Applications (1977), Academic Press: Academic Press New York), 195-213 · Zbl 0377.41016
[17] Saff, E. B.; Varga, R. S., On the zeros and poles of Padé approximants to \(e^z\), III, Numer. Math., 30, 241-266 (1978) · Zbl 0438.41015
[18] Stahl, H., Quadratic Hermite-Padé polynomials associated with the exponential function, J. Approx. Theory, 125, 238-294 (2003) · Zbl 1044.41009
[19] Stahl, H., From Taylor to quadratic Hermite-Padé polynomials, Electron. Trans. Numer. Anal., 25, 480-510 (2006) · Zbl 1107.41015
[20] Stahl, H., Orthogonal polynomials with complex-valued weight function, I, II, Constr. Approx., 2, 225-240 (1986), 241-251 · Zbl 0592.42016
[21] Varga, R. S.; Carpenter, A. J., Asymptotics for the zeros and poles of normalized Padé approximants to \(e^z\), Numer. Math., 68, 169-185 (1994) · Zbl 0807.30003
[22] Wielonsky, F., On rational approximation to the exponential function with complex conjugate interpolation points, J. Approx. Theory, 111, 344-368 (2001) · Zbl 0981.41009
[23] Wielonsky, F., Riemann-Hilbert analysis and uniform convergence of rational interpolants to the exponential function, J. Approx. Theory, 131, 100-148 (2004) · Zbl 1069.30062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.