×

Operations between sets in geometry. (English) Zbl 1282.52006

Summary: An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in \(n\)-dimensional Euclidean space \(\mathbb{R}^n\). It is proved that if \(n\geq 2\), with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, GL\((n)\) covariant, and associative if and only if it is \(L_p\) addition for some \(1 \leq p \leq \infty\). It is also demonstrated that if \(n\geq 2\), an operation \(\ast\) between compact convex sets is continuous in the Hausdorff metric, GL\((n)\) covariant, and has the identity property (i.e., \(K \ast \{o\}=K=\{o\} \ast K\) for all compact convex sets \(K\), where \(o\) denotes the origin) if and only if it is Minkowski addition. Some analogous results for operations between star sets are obtained. Various characterizations are given of operations that are projection covariant, meaning that the operation can take place before or after projection onto subspaces, with the same effect.
Several other new lines of investigation are followed. A relatively little-known but seminal operation called \(M\)-addition is generalized and systematically studied for the first time. Geometric-analytic formulas that characterize continuous and GL\((n)\)-covariant operations between compact convex sets in terms of \(M\)-addition are established. It is shown that if \(n\geq 2\), an \(o\)-symmetrization of compact convex sets (i.e., a map from the compact convex sets to the origin-symmetric compact convex sets) is continuous in the Hausdorff metric, GL\((n)\) covariant, and translation invariant if and only if it is of the form \(\lambda DK\) for some \(\lambda\geq 0\), where \(DK=K+(-K)\) is the difference body of \(K\). The term “polynomial volume” is introduced for the property of operations \(\ast\) between compact convex or star sets that the volume of \(rK \ast sL,r,s\geq 0\), is a polynomial in the variables \(r\) and \(s\). It is proved that if \(n\geq 2\), with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, GL\((n)\) covariant, associative, and has polynomial volume if and only if it is Minkowski addition.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
39B22 Functional equations for real functions
52A39 Mixed volumes and related topics in convex geometry
52A41 Convex functions and convex programs in convex geometry

References:

[1] Aczél, J.: A solution of some problems of K. Borsuk and L. Jánossy. Acta Phys. Acad. Sci. Hungar. 4, 351-362 (1955) · Zbl 0068.11102 · doi:10.1007/BF03157833
[2] Aczél, J.: Lectures on Functional Equations and Applications. Academic Press, New York (1966) · Zbl 0139.09301
[3] Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge Univ. Press, Cambridge (1989) · Zbl 0685.39006
[4] Alexander, R.: Zonoid theory and Hilbert’s fourth problem. Geom. Dedicata 28, 199-211 (1988) · Zbl 0659.51022 · doi:10.1007/BF00147451
[5] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Sci., Singapore (2006) · Zbl 1100.39023
[6] Barki, H., Denis, F., Dupont, F.: Contributing vertices-based Minkowski sum computation of convex polyhedra. Computer-Aided Design 41, 525-538 (2009) · Zbl 1206.65070 · doi:10.1016/j.cad.2009.03.008
[7] Bohnenblust, F.: An axiomatic characterization of Lp-spaces. Duke Math. J. 6, 627-640 (1940) · Zbl 0024.04101 · doi:10.1215/S0012-7094-40-00648-2
[8] Burago, Y. D., Zalgaller, V. A.: Geometric Inequalities. Springer, Berlin (1988) · Zbl 0633.53002
[9] Dafnis, N., Paouris, G.: Small ball probability estimates, \psi 2-behavior and the hyperplane conjecture. J. Funct. Anal. 258, 1933-1964 (2010) · Zbl 1189.52004 · doi:10.1016/j.jfa.2009.06.038
[10] Firey, W. J.: Polar means of convex bodies and a dual to the Brunn-Minkowski theorem. Canad. J. Math. 13, 444-453 (1961) · Zbl 0126.18005 · doi:10.4153/CJM-1961-037-0
[11] Firey, W. J.: p-means of convex bodies. Math. Scand. 10, 17-24 (1962) · Zbl 0188.27303
[12] Fleming, R. J.: Bohnenblust’s theorem and norm-equivalent coordinates. In: Banach Spaces and Their Applications in Analysis, de Gruyter, Berlin, 331-338 (2007) · Zbl 1140.46304
[13] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces, Vol. 2, Vector-Valued Function Spaces. Chapman & Hall/CRC, Boca Raton, FL (2008) · Zbl 1139.46001
[14] Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math. (2) 140, 435-447 (1994) · Zbl 0826.52010 · doi:10.2307/2118606
[15] Gardner, R. J.: Geometric Tomography. 2nd ed., Cambridge Univ. Press, New York (2006) · Zbl 1102.52002
[16] Gardner, R. J., Hug, D., Weil, W.: The Orlicz-Brunn-Minkowski theory: A general frame- work, additions, and inequalities. J. Differential Geom., to appear · Zbl 1303.52002
[17] Gardner, R. J., Koldobsky, A., Schlumprecht, T.: An analytical solution to the Busemann- Petty problem on sections of convex bodies. Ann. of Math. (2) 149, 691-703 (1999) · Zbl 0937.52003 · doi:10.2307/120978
[18] Gardner, R. J., Parapatits, L., Schuster, F. E.: A characterization of Blaschke addition.
[19] Gardner, R. J., Vol\check ci\check c, A.: Tomography of convex and star bodies. Adv. Math. 108, 367-399 (1994) · Zbl 0831.52002 · doi:10.1006/aima.1994.1075
[20] Gruber, P. M.: Convex and Discrete Geometry. Springer, Berlin (2007) · Zbl 1139.52001 · doi:10.1007/978-3-540-71133-9
[21] Haberl, C., Schuster, F. E.: Asymmetric affine Lp Sobolev inequalities. J. Funct. Anal. 257, 641-658 (2009) · Zbl 1180.46023 · doi:10.1016/j.jfa.2009.04.009
[22] Haberl, C., Schuster, F. E.: General Lp affine isoperimetric inequalities. J. Differential Geom. 83, 1-26 (2009) · Zbl 1185.52005
[23] Ignaczak, E., Paszkiewicz, A.: Extensions of convex functionals on convex cones. Appl. Math. (Warsaw) 25, 381-386 (1998) · Zbl 0995.46008
[24] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms, Kluwer, Dordrecht (2000) · Zbl 0972.03002
[25] Koldobsky, A.: Fourier Analysis in Convex Geometry. Amer. Math. Soc., Providence, RI (2005) · Zbl 1082.52002
[26] Lutwak, E.: Dual mixed volumes. Pacific J. Math. 58, 531-538 (1975) · Zbl 0273.52007 · doi:10.2140/pjm.1975.58.531
[27] Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232-261 (1988) · Zbl 0657.52002 · doi:10.1016/0001-8708(88)90077-1
[28] Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375-390 (2000) · Zbl 0974.52008 · doi:10.1215/S0012-7094-00-10432-2
[29] Lutwak, E., Yang, D., Zhang, G.: On Lp affine isoperimetric inequalities. J. Differential Geom. 56, 111-132 (2000) · Zbl 1034.52009
[30] Lutwak, E., Yang, D., Zhang, G.: The Cramer-Rao inequality for star bodies. Duke Math. J. 112, 59-81 (2002) · Zbl 1021.52008 · doi:10.1215/S0012-9074-02-11212-5
[31] Lutwak, E., Yang, D., Zhang, G.: Sharp affine Lp Sobolev inequalities. J. Differential Geom. 62, 17-38 (2002) · Zbl 1073.46027
[32] Lutwak, E., Yang, D., Zhang, G.: On the Lp-Minkowski problem. Trans. Amer. Math. Soc. 356, 4359-4370 (2004) · Zbl 1069.52010 · doi:10.1090/S0002-9947-03-03403-2
[33] Lutwak, E., Yang, D., Zhang, G.: Lp John ellipsoids. Proc. London Math. Soc. (3) 90, 497- 520 (2005) · Zbl 1074.52005 · doi:10.1112/S0024611504014996
[34] Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220-242 (2010) · Zbl 1437.52006
[35] Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differential Geom. 84, 365-387 (2010) · Zbl 1206.49050
[36] Lutwak, E., Yang, D., Zhang, G.: The Brunn-Minkowski-Firey inequality for non-convex sets. Adv. Appl. Math. 48, 407-413 (2012) · Zbl 1252.52006 · doi:10.1016/j.aam.2011.11.003
[37] Mesikepp, T.: M-addition. Master’s thesis, Department of Mathematics, Western Washington Univ., Bellingham, WA (2013)
[38] Molchanov, I., Schmutz, M.: Multivariate extension of put-call symmetry. SIAM J. Financial Math. 1, 396-426 (2010) · Zbl 1200.91292 · doi:10.1137/090754194
[39] Mosler, K.: Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Lecture Notes in Statist. 165, Springer, Berlin (2002) · Zbl 1027.62033
[40] Mulholland, H. P.: On generalizations of Minkowski’s inequality in the form of a triangle inequality. Proc. London Math. Soc. (2) 51, 294-307 (1950) · Zbl 0035.03501 · doi:10.1112/plms/s2-51.4.294
[41] Pearson, K. R.: Interval semirings on R1 with ordinary multiplication. J. Austral. Math. Soc. 6, 273-288 (1966) · Zbl 0149.27704 · doi:10.1017/S1446788700004274
[42] Protasov, V. Y.: A generalized joint spectral radius. A geometric approach. Izv. Ross. Akad. Nauk Ser. Mat. 61, 99-136 (1997) (in Russian); English transl.: Izv. Math. 61, 995-1030 (1997) · Zbl 0893.15002 · doi:10.1070/im1997v061n05ABEH000161
[43] Protasov, V. Y.: On possible generalizations of convex addition. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1999, no. 4, 13-18, 71 (in Russian); English transl.: Moscow Univ. Math. Bull. 54, 12-17 (1999) · Zbl 0964.52003
[44] Rockafellar, R. T.: Convex Analysis. Princeton Univ. Press, Princeton, NJ (1970) · Zbl 0193.18401
[45] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge Univ. Press, Cam- bridge (1993) · Zbl 0798.52001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.