×

A real part theorem for the higher derivatives of analytic functions in the unit disk. (English) Zbl 1277.31003

Summary: Let \(n\) be a positive integer. Let \(U\) be the unit disk and let \(h^p(U)\), \(p\geq 1\), be the Hardy space of harmonic functions. G. Kresin and V. G. Maz’ya [Sharp real-part theorems. A unified approach. Berlin: Springer (2007; Zbl 1117.30001)] found a representation for the function \(H_{n,p}(z)\) in the inequality
\[ \big|f^{(n)} (z)\big|\leq H_{n,p}(z)\big\| \mathfrak R (f-\mathcal{P }_{l})\big\| _{h^p(U)},\quad\mathfrak{R}f\in h^p(U),\quad z\in U, \]
where \(\mathcal{P}_l\) is a polynomial of degree \(l\leq n-1\). We determine the sharp constant \(C_{p,n}\) in the inequality \(H_{n,p}(z)\leq\frac{C_{p,n}}{(1-|z|^2)^{1/p+n}}\). This extends a recent result of D. Kalaj and M. Marković [Complex Anal. Oper. Theory 7, No. 4, 1167–1183 (2013; Zbl 1279.31001)], where only the case \(n=1\) was considered. As a corollary, an inequality for the modulus of \(n\)-th derivative of an analytic function defined in a complex domain with bounded real part is obtained. This result improves a recent result of G. Kresin and V. Maz’ya [J. Math. Sci., New York 181, No. 2, 107–125 (2012); translation from Probl. Mat. Anal. 62, 3–17 (2011; Zbl 1277.30016)].

MSC:

31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
42B30 \(H^p\)-spaces

References:

[1] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer, New York (1992) · Zbl 0765.31001
[2] Beck, M., Halloran, M.: Finite trigonometric character sums via discrete Fourier analysis. Int. J. Number Theory 6(1), 51–67 (2010) · Zbl 1268.11106 · doi:10.1142/S1793042110002806
[3] Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38(4), 829–840 (1989) · Zbl 0677.30020 · doi:10.1512/iumj.1989.38.38039
[4] Garnett, J.: Bounded analytic functions. In: Pure and Applied Mathematics, vol. 96. Academic Press, Inc., New York (1981) · Zbl 0469.30024
[5] Khavinson, D.: An extremal problem for harmonic functions in the ball. Canad. Math. Bull. 35, 218–220 (1992) · Zbl 0776.31004 · doi:10.4153/CMB-1992-031-8
[6] Kalaj, D., Vuorinen, M.: On harmonic functions and the Schwarz lemma. Proc. Am. Math. Soc. 140, 161–165 (2012) · Zbl 1247.31002 · doi:10.1090/S0002-9939-2011-10914-6
[7] Kalaj, D., Marković, M.: Optimal estimates for the gradient of harmonic functions in the unit disk. In: Complex analysis and operator theory. doi: 10.1007/s11785-011-0187 . arXiv:1012.3153. · Zbl 1279.31001
[8] Kresin, G., Maz’ya, V.: Sharp real part theorems for higher order derivatives. J. Math. Sci. 181(2), 107–125 (2012) · Zbl 1277.30016 · doi:10.1007/s10958-012-0679-5
[9] Kresin, G., Maz’ya, V.: Sharp real-part theorems: a unified approach. In: Lecture Notes in Mathematics, vol 1903. Springer, Berlin (2007)
[10] Macintyre, A.J., Rogosinski, W.W.: Extremum problems in the theory of analytic functions. Acta Math. 82, 275–325 (1950) · Zbl 0036.04503 · doi:10.1007/BF02398280
[11] Pavlović, M.: Introduction to function spaces on the disk, vol 20. Matematički Institut SANU, Belgrade (2004) · Zbl 1107.30001
[12] Ruscheweyh, S.: Two remarks on bounded analytic functions, Serdica 11(2), 200–202 (1985) · Zbl 0581.30009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.