×

Vacuum polarization of a scalar field on Lie groups and homogeneous spaces. (English. Russian original) Zbl 1274.81174

Theor. Math. Phys. 167, No. 1, 468-483 (2011); translation from Teor. Mat. Fiz. 167, No. 1, 78-95 (2011).
Summary: We propose a method for calculating vacuum means of the scalar field energy-momentum tensor on Lie groups and homogeneous spaces. We use the generalized harmonic analysis based on the method of coadjoint representation orbits.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T55 Casimir effect in quantum field theory
22E99 Lie groups
Full Text: DOI

References:

[1] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields [in Russian], Atomizdat, Moscow (1980); English transl.: Vacuum Quantum Effects in Strong External Fields, Pergamon, Oxford (1982).
[2] N. D. Birrell and P. C. W. Devis, Quantum Fields in Curved Space-Time (Cambridge Monogr. Math. Phys., Vol. 7), Cambridge Univ. Press., Cambridge (1982).
[3] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time (London Math. Soc. Stud. Texts, Vol. 17), Cambridge Univ. Press, Cambridge (1989). · Zbl 0677.53081
[4] A. DeBenedictis and K. S. Viswanathan, ”Stress-energy tensors for higher dimensional gravity,” arXiv:hepth/9911060v1 (1999).
[5] S. M. Christensen, Phys. Rev. D, 14, 2490–2501 (1976). · doi:10.1103/PhysRevD.14.2490
[6] B. Zel’dovich and A. A. Starobinsky, Sov. Phys. JETP, 34, 1159 (1972).
[7] C. Molina-Paris, ”Energy-momentum tensor and particle creation in the de Sitter universe,” in: The Eighth Marcel Grossmann Meeting T. Piran and R. Ruffini, eds.), World Scientific, River Edge, N. J. (1999), pp. 827–829; arXiv:gr-qc/9710088v1 (1997).
[8] R. Camporesi and A. Higichi, Phys. Rev. D, 45, 3591–3603 (1992). · doi:10.1103/PhysRevD.45.3591
[9] A. A. Kirillov, Russ. Math. Surveys, 17, 53–104 (1962). · Zbl 0106.25001 · doi:10.1070/RM1962v017n04ABEH004118
[10] A. A. Kirillov, Funct. Anal. Appl., 2,No. 2, 133–146 (1968). · Zbl 0174.45001 · doi:10.1007/BF01075947
[11] A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1978); English transl. prev. ed., Springer, Berlin (1976).
[12] B. Kostant, ”Quantzation and unitary representations: I. Prequantization,” in: Lectures in Modern Analysis and Applications (Lect. Notes Math., Vol. 170, C. T. Taam, ed.), Vol. 3, Springer, Berlin (1970), pp. 87–208.
[13] J.-M. Souriau, Structure des systèmes dynamiques: Maîtrises de mathématique, Dunod, Paris (1970).
[14] A. V. Shapovalov and I. V. Shirokov, Theor. Math. Phys., 104, 921–934 (1995). · Zbl 0856.35109 · doi:10.1007/BF02065973
[15] A. V. Shapovalov and I. V. Shirokov, Theor. Math. Phys., 106, 1–10 (1996). · Zbl 0890.58098 · doi:10.1007/BF02070758
[16] W. Miller Jr., Symmetry and Separation of Variables (Encyclopedia Math. Appl., Vol. 4), Addison-Wesley, Reading, Mass. (1977).
[17] V. Moretti, Phys. Rev. D, 56, 7797–7819 (1997); arXiv:hep-th/9705060v2 (1997). · doi:10.1103/PhysRevD.56.7797
[18] I. V. Shirokov, ”K-orbits, harmonic analysis on homogeneous spaces, and integrating differential equations,” Preprint, Omsk State Univ., Omsk (1998).
[19] I. V. Shirokov, Theor. Math. Phys., 123, 754–767 (2000). · Zbl 0967.22004 · doi:10.1007/BF02551030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.