×

Renormalization group and the \(\varepsilon\)-expansion: representation of the \(\beta\)-function and anomalous dimensions by nonsingular integrals. (English. Russian original) Zbl 1274.81167

Theor. Math. Phys. 169, No. 1, 1450-1459 (2011); translation from Teor. Mat. Fiz. 169, No. 1, 100-111 (2011).
Summary: In the framework of the renormalization group and the \(\varepsilon\)-expansion, we propose expressions for the \(\beta\)-function and anomalous dimensions in terms of renormalized one-irreducible functions. These expressions are convenient for numerical calculations. We choose the renormalization scheme in which the quantities calculated using \(R\) operations are represented by integrals that do not contain singularities in \(\varepsilon\). We develop a completely automated calculation system starting from constructing diagrams, determining relevant subgraphs, combinatorial coefficients, etc., up to determining critical exponents. As an example, we calculate the critical exponents of the \(\varphi^3\) model in the order \(\varepsilon^4\).

MSC:

81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
81T18 Feynman diagrams

Software:

pvegas.c; Cuba; grc
Full Text: DOI

References:

[1] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of {\(\phi\)} 4-Theories, World Scientific, River Edge, N. J. (2001).
[2] N. V. Antonov and A. N. Vasil’ev, Theor. Math. Phys., 60, 671–679 (1984). · doi:10.1007/BF01018251
[3] A. N. Vasil’ev, Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], Petersburg Nucl. Phys. Inst., St. Petersburg (1998); English transl.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).
[4] O. I. Zav’yalov, Renormalized Quantum Field Theory [in Russian], Nauka, Moscow (1979); English transl., Kluwer, Dordrecht (1990).
[5] T. Kaneko, ”grc (Feynman graph generator),” in: GRACE System, http://minami-home.kek.jp/ .
[6] R. Kreckel, Comput. Phys. Commun., 106, 258–266 (1997); ”Pvegas.c,” ftp://ftpthep.physik.uni-mainz.de/pub/pvegas/ ; ”Cuba – a library for multidimensional numerical integration,” http://www.feynarts.de/cuba/ . · Zbl 0937.65002 · doi:10.1016/S0010-4655(97)00099-4
[7] O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKane, J. Phys A, 13, L247–L251 (1980). · doi:10.1088/0305-4470/13/7/006
[8] O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKane, J. Phys A, 14, 2391–2413 (1981). · doi:10.1088/0305-4470/14/7/033
[9] L. Ts. Adzhemyan, S. N. Novikov, and L. Sladkoff, Vestnik St. Petersburg Univ. Ser. 4: Fiz., Khim., No. 4, 110–114 (2008).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.