×

Reduced numerical modeling of flows involving liquid-crystalline polymers. (English) Zbl 1274.76145

Summary: Kinetic theory models involving the Fokker-Planck equation can be accurately discretized using a mesh support (Finite Elements, Finite Differences, Finite Volumes, Spectral Techniques, ...). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function has only local support and is related to a node that defines the associated degree of freedom. In the technique proposed here, a reduced approximation basis is constructed. The new shape functions have extended support and are defined in the whole domain in an appropriate manner (the most characteristic functions related to the model solution). Thus, the number of degrees of freedom involved in the solution of the Fokker-Planck equation is very significantly reduced. The construction of those new approximation functions is done with an ’a priori’ approach, which combines a basis reduction (using the Karhunen-Loève decomposition) with a basis enrichment based on the use of some Krylov subspaces. This paper analyzes the application of model reduction to the simulation of non-linear kinetic theory models involving complex behaviors, such as those coming from stability analysis, complex geometries and coupled models. We apply our model reduction approach to the Doi’s classical constitutive equation for viscoelasticity of liquid-crystalline polymer.

MSC:

76A15 Liquid crystals
76M10 Finite element methods applied to problems in fluid mechanics

References:

[1] Ammar, A.; Chinesta, F.: A particle strategy for solving Fokker-Planck equation governing the fiber orientation distribution in steady recirculating flows involving short fiber suspensions, (2004) · Zbl 1160.76396
[2] Ammar, A.; Ryckelynck, D.; Chinesta, F.; Keunings, R.: On the reduction of kinetic theory model related to finitely extensible dumbbells, J. non-Newtonian fluid mech. 134, 136-147 (2006) · Zbl 1123.76309 · doi:10.1016/j.jnnfm.2006.01.007
[3] Beris, A. N.; Edwards, B. J.: Thermodynamics of flowing systems with internal microstructure, (1994)
[4] Chaubal, C. V.; Srinivasan, A.; Egecioglu, O.; Leal, L. G.: Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems, J. non-Newtonian fluid mech. 70, 125-154 (1997)
[5] Chaubal, C. V.; Leal, L. G.: A closure approximation for liquid-crystalline polymer models based on parametric density estimation, J. rheol. 42, 177-202 (1998)
[6] Chauviere, C.; Lozinski, A.: Simulation of dilute polymer solutions using a Fokker – Planck equation, Comput. fluids 33, 687-696 (2004) · Zbl 1100.76549 · doi:10.1016/j.compfluid.2003.02.002
[7] Chinesta, F.; Ammar, A.; Falco, A.; Laso, M.: On the reduction of stochastic kinetic theory models of complex fluids, Model. simulat. Mater. sci. Eng. 15, 639-652 (2007)
[8] Chinesta, F.; Chaidron, G.; Poitou, A.: On the solution of the Fokker – Planck equations in steady recirculating flows involving short fiber suspensions, J. non-Newtonian fluid mech. 113, 97-125 (2004) · Zbl 1065.76189 · doi:10.1016/S0377-0257(03)00100-9
[9] Cui, Z. L.: On weak plane Couette and Poiseuille flows of rigid rod and platelet ensembles, SIAM J. Appl. math. 66, 1227-1260 (2006) · Zbl 1136.76311 · doi:10.1137/04061934x
[10] De Andrade Lima, L. R. P.; Rey, A. D.: Poiseuille flow of discotic nematic liquid crystals’ onion textures, J. non-Newtonian fluid mech. 119, 71-81 (2004) · Zbl 1072.76010 · doi:10.1016/j.jnnfm.2003.01.001
[11] De Andrade Lima, L. R. P.; Rey, A. D.: Poiseuille flow of Leslie-ericksen discotic liquid crystals: solution multiplicity, multistability, and non-Newtonian rheology, J. non-Newtonian fluid mech. 110, 103-142 (2003) · Zbl 1143.76376 · doi:10.1016/S0377-0257(03)00006-5
[12] Doi, M.; Edwards, S. F.: The theory of polymer dynamic, (1989)
[13] Edwards, B. J.; Beris, A. N.; Grmela, M.: The dynamic behavior of liquid-crystals — a continuum description through generalized brackets, Mol. cryst. Liquid cryst. 201, 51-86 (1991)
[14] Edwards, B. J.; Beris, A. N.; Grmela, M.: Generalized constitutive equation for polymeric liquid-crystals. 1. Model formulation using the Hamiltonian (Poisson bracket) formulation, J. non-Newtonian fluid mech. 35, 51-72 (1990) · Zbl 0707.76010
[15] Edwards, B. J.; Beris, A. N.; Grmela, M.; Larson, R. G.: Generalized constitutive equation for polymeric liquid-crystals. 2. Nonhomogeneous systems, J. non-Newtonian fluid mech. 36, 243-254 (1990) · Zbl 0722.76006
[16] Feng, J.; Chaubal, C. V.; Leal, L. G.: Closure approximations for the doi theory: which to use in simulating complex flows of liquid-crystalline polymers?, J. rheol. 42, 1095-1119 (1998)
[17] Feng, J.; Leal, L. G.: Pressure-driven channel flows of a model liquid-crystalline polymer, Phys. fluids 11, 2821-2835 (1999) · Zbl 1149.76376 · doi:10.1063/1.870141
[18] Feng, J.; Leal, L. G.: Simulating complex flows of liquid-crystalline polymers using the doi theory, J. rheol. 41, 1317-1335 (1997)
[19] Forest, M. G.; Zhou, R. H.; Wang, Q.: Nano-rod suspension flows: a 2D Smoluchowski – Navier – Stokes solver, Int. J. Numer. anal. Model. 4, 478-488 (2007) · Zbl 1148.76057
[20] Forest, M. G.; Zhou, R. H.; Wang, Q.: Kinetic structure simulations of nematic polymers in plane Couette cells. II: in-plane structure transitions, Multiscale model. Simul. 4, 1280-1304 (2005) · Zbl 1236.76008
[21] Grecov, D.; De Andrade Lima, L. R. P.; Rey, A. D.: Multiscale simulation of flow-induced texture formation in polymer liquid crystals and carbonaceous mesophases, Mol. simul. 31, 185-199 (2005) · Zbl 1071.82592 · doi:10.1080/08927020412331332604
[22] Grecov, D.; Rey, A. D.: Texture control strategies for flow-aligning liquid crystal polymers, J. non-Newtonian fluid mech. 139, 197-208 (2006) · Zbl 1195.76123 · doi:10.1016/j.jnnfm.2006.08.004
[23] Jendrejack, R.; De Pablo, J.; Graham, M.: A method for multiscale simulation of flowing complex fluids, J. non-Newtonian fluid mech. 108, 123-142 (2002) · Zbl 1143.76535 · doi:10.1016/S0377-0257(02)00127-1
[24] Keunings, R.: On the peterlin approximation for finitely extensible dumbbells, J. non-Newtonian fluid mech. 68, 85-100 (1997)
[25] Keunings, R.: Micro-macro methods for the multiscale simulation viscoelastic flow using molecular models of kinetic theory, Rheology reviews, 67-98 (2004)
[26] Klein, D. H.; Leal, L. G.; García-Cervera, C. J.; Ceniceros, H. D.: Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow, Phys. fluids 19, 023101 (2007) · Zbl 1146.76444 · doi:10.1063/1.2424499
[27] Kroger, M.: Simple models for complex non-equilibrium fluids, Phys. rep. 390, 453-551 (2004)
[28] Kroger, M.; Ammar, A.; Chinesta, F.: Consistent closure schemes for statistical models of anisotropic fluids, J. non-Newtonian fluid mech. 149, 40-55 (2008) · Zbl 1391.76558
[29] Larson, R. G.; Öttinger, H. C.: Effect of molecular elasticity on out-of-plane orientation in shearing flows of liquid-crystalline polymers, Macromolecules 24, 6270-6282 (1991)
[30] Laso, M.; Öttinger, H. C.: Calculation of viscoelastic flow using molecular-models — the CONNFFESSIT approach, J. non-Newtonian fluid mech. 47, 1-20 (1993) · Zbl 0774.76012 · doi:10.1016/0377-0257(93)80042-A
[31] Lipschutz, M.: Differential geometry, (1970) · Zbl 0202.52301
[32] Lipscomb, G. G.; Denn, M. M.; Hur, D. U.; Boger, D. V.: J. non-Newtonian fluid mech., J. non-Newtonian fluid mech. 26, 297-325 (1988)
[33] Lozinski, A.; Chauviere, C.: A fast solver for Fokker – Planck equation applied to viscoelastic flows calculations: 2D FENE model, J. comput. Phys. 189, 607-625 (2003) · Zbl 1060.82525 · doi:10.1016/S0021-9991(03)00248-1
[34] Maffetone, P. L.; Grosso, M.; Friedenberg, C.; Fuller, G. G.: Extensional flow of a two-dimensional polymer liquid crystal, Macromolecules 29, 8473-8478 (1996)
[35] Marenduzzo, D.; Orlandini, E.; Yeomans, J. M.: Hydrodynamics and rheology of active liquid crystals: a numerical investigation, Phys. rev. Lett. 98, 118102 (2007)
[36] Marrucci, G.: Rheology of liquid-crystalline polymers, Pure appl. Chem. 57, 1545-1552 (1985)
[37] Marrucci, G.; Maffettone, P. L.: Description of the liquid-crystalline phase of rodlike polymers at high shear rates, Macromolecules 22, 4076-4082 (1989)
[38] Marrucci, G.; Maffettone, P. L.: Nematic phase of rodlike polymers. 1. Prediction of transient-behavior at high shear rates, J. rheol. 34, 1217-1230 (1990)
[39] Marrucci, G.; Maffettone, P. L.: Nematic phase of rodlike polymers. 2. Polydomain predictions in the tumbling regime, J. rheol. 34, 1231-1244 (1990)
[40] Öttinger, H. C.; Laso, M.: Smart polymers in finite element calculations, (1992)
[41] Pruliere, E.; Ammar, A.; El Kissi, N.; Chinesta, F.: Recirculating flows involving short fiber suspensions: numerical difficulties and efficient advanced micro-macro solvers, Arch. comput. Methods eng. State art rev. 16, 1-30 (2009) · Zbl 1170.76333 · doi:10.1007/s11831-008-9027-9
[42] Rey, A. D.; Denn, M. M.: Dynamical phenomena in liquid-crystalline materials, Annu. rev. Fluid mech. 34, 233-266 (2002) · Zbl 1047.76008
[43] Ryckelynck, D.: A priori hyper-reduction method: an adaptive approach, J. comput. Phys. 202, 346-366 (2005) · Zbl 1288.65178
[44] Ryckelynck, D.; Chinesta, F.; Cueto, E.; Ammar, A.: On the a priori model reduction: overview and recent developments, Arch. comput. Methods eng. 13, No. 1, 91-128 (2006) · Zbl 1142.76462 · doi:10.1007/BF02905932
[45] Sgalari, G.; Leal, L. G.; Meiburg, E.: Texture evolution of sheared liquid crystalline polymers: numerical predictions of roll-cells instability, director turbulence, and striped texture with a molecular model, J. rheol. 47, 1417-1444 (2003)
[46] Somasi, M.; Khomami, B.; Woo, N. J.; Hur, J. S.; Shaqfeh, E. S. G.: Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues, J. non-Newtonian fluid mech. 108, 227-255 (2002) · Zbl 1143.76370 · doi:10.1016/S0377-0257(02)00132-5
[47] Venkiteswaran, G.; Junk, M.: A QMC approach for high dimensional Fokker – Planck equations modelling polymeric liquids, Math. comput. Simul. 68, 43-56 (2005) · Zbl 1059.82038 · doi:10.1016/j.matcom.2004.09.002
[48] Yu, H. J.; Zhang, P. W.: A kinetic-hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow, J. non-Newtonian fluid mech. 141, 116-127 (2007) · Zbl 1195.76125 · doi:10.1016/j.jnnfm.2006.09.005
[49] Zhou, R. H.; Forest, M. G.; Wang, Q.: Kinetic structure simulations of nematic polymers in plane Couette cells. I: the algorithm and benchmarks, Multiscale model. Simul. 3, 853-870 (2005) · Zbl 1108.76010 · doi:10.1137/04060946X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.