×

Limit theorems for extremes of strongly dependent cyclo-stationary \(\chi \)-processes. (English) Zbl 1274.60077

The centered Gaussian process \(X(t),t\in\mathbb{R}\) is called a cyclo-stationary with period \(\tau>0\) if for every \(s\in\mathbb{R}\) its covariance function \(r(t,t+s)=\mathbb{E}\left\{ X(t)X(t+s)\right\} \) is a periodic function with respect to \(t\) with period \(\tau\).Consider cyclo-stationary \(\chi\)-processes defined by \[ \chi_{n}(t)=\left( X_{1}^{2}(t)+\dots+X_{n}^{2}(t)\right) ^{1/2},t\geq0, \] where \(X_{1}(t),\dots,X_{n}(t),t\geq0\) are indepedent copies of a centered cyclo-stationary Gaussian process \(X(t),t\geq0.\) The authors introduce strongly dependent cyclo-stationary \(\chi\)-processes and they obtain limit theorems of the maximum of such processes to some mixed Gumbel laws. Finally, under a global Hölder condition they show that Seleznjev \({p}\)th-mean convergence theorem holds.

MSC:

60F05 Central limit and other weak theorems
60G70 Extreme value theory; extremal stochastic processes
60G15 Gaussian processes
Full Text: DOI

References:

[1] Albin, J.P.M.: On extremal theory for stationary processes. Ann. Probab. 18, 92-128 (1990) · Zbl 0704.60029 · doi:10.1214/aop/1176990940
[2] Aronowich, M., Adler, R.J.: Behaviour of \(\chi^2\) processes at extrema. Adv. Appl. Probab. 17, 280-297 (1985) · Zbl 0575.60037 · doi:10.2307/1427141
[3] Aronowich, M., Adler, R.J.: Extrema and level crossings of \(\chi^2\) processes. Adv. Appl. Probab. 18, 901-920 (1986) · Zbl 0611.60035 · doi:10.2307/1427255
[4] Azaïs, J.M., Mercadier, C.: Asymptotic Poisson character of extremes in non-stationary Gaussian models. Extremes 6, 301-318 (2003) · Zbl 1088.60046 · doi:10.1007/s10687-004-4722-2
[5] Berman, S.M.: Sojourns and extremes of Gaussian processes. Ann. Probab. 2, 999-1026 (1974) · Zbl 0298.60026 · doi:10.1214/aop/1176996495
[6] Berman, S.: Sojourns and extremes of stationary processes. Ann. Probab. 10, 1-46 (1982) · Zbl 0498.60035 · doi:10.1214/aop/1176993912
[7] Berman, M.S.: Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/Cole, Stamford (1992) · Zbl 0809.60046
[8] Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. DMV Seminar Vol. 23, 2nd edn. Birkhäuser, Basel (2010) · Zbl 1213.62082
[9] Gardner, W.A., Napolitano, A., Paura, L.: Cyclostationarity: Half a century of research. Signal Process. (Elsevier) 86, 639-697 (2006) · Zbl 1163.94338 · doi:10.1016/j.sigpro.2005.06.016
[10] Hüsler, J.: Extreme values and high boundary crossings for locally stationary Gaussian processes. Ann. Probab. 18, 1141-1158 (1990) · Zbl 0726.60026 · doi:10.1214/aop/1176990739
[11] Konstant, D., Piterbarg, V.I.: Extreme values of the cyclostationary Gaussian random process. J. Appl. Probab. 30, 82-97 (1993) · Zbl 0768.60048 · doi:10.2307/3214623
[12] Konstant, D., Piterbarg, V.I., Stamatovic, S.: Limit theorems for cyclo-stationary \(\chi \)-processes. Lith. Math. J. 44, 196-208 (2004) · Zbl 1055.60047
[13] Leadbetter, M.R., Rootzén, H.: Extremal theory for stochastic processes. Ann. Appl. Probab. 16, 431-478 (1988) · Zbl 0648.60039 · doi:10.1214/aop/1176991767
[14] Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, Berlin, New York (1983) · Zbl 0518.60021 · doi:10.1007/978-1-4612-5449-2
[15] Lindgren, G.: Extreme values and crossings for the \(\chi^2\)-process and other functions of multidimensional Gaussian proceses with reliability applications. Adv. Appl. Probab. 12, 746-774 (1980) · Zbl 0434.60038 · doi:10.2307/1426430
[16] Lindgren, G.: Slepian models for \(\chi^2\)-process with dependent components with application to envelope upcrossings. J. Appl. Probab. 26, 36-49 (1989) · Zbl 0686.60034 · doi:10.2307/3214314
[17] Piterbarg, V.I.: High excursions for nonstationary generalized chi-square processes. Stoch. Proc. Appl. 53, 307-337 (1994) · Zbl 0815.60045 · doi:10.1016/0304-4149(94)90068-X
[18] Piterbarg, VI, Asymptotic Methods in the Theory of Gaussian Processes and Fields (1996), Providence, RI · Zbl 0841.60024
[19] Piterbarg, V.I.: Large deviations of a storage process with fractional Browanian motion as input. Extremes 4, 147-164 (2001) · Zbl 1003.60053 · doi:10.1023/A:1013973109998
[20] Piterbarg, V.I., Stamatovic, S.: Limit theorem for high level \(\alpha \)-upcrossings by \(\chi \)-process. Theory Probab. Appl. 48, 734-741 (2004) · Zbl 1064.60067 · doi:10.1137/S0040585X97980786
[21] Seleznjev, O.: Asymptotic behavior of mean uniform norms for sequences of Gaussian processes and fields. Extremes 8, 161-169 (2006) · Zbl 1120.60039 · doi:10.1007/s10687-006-7965-x
[22] Sharpe, K.: Some properties of the crossing process generated by a stationary \(\chi^2\)-process. Adv. Appl. Probab. 10, 373-391 (1978) · Zbl 0376.60038 · doi:10.2307/1426941
[23] Stamatovic, B., Stamatovic, S.: Cox limit theorem for large excursions of a norm of Gaussian vector process. Stat. Prob. Lett. 80, 1479-1485 (2010) · Zbl 1197.60038 · doi:10.1016/j.spl.2010.05.016
[24] Tan, Z., Hashorva, E.: Exact asymptotics and limit theorems for supremum of stationary \(\chi \)-processes over a random interval. Preprint (2012) · Zbl 1291.60107
[25] Tan, Z., Hashorva, E., Peng, Z.: Asymptotics of maxima of strongly dependent Gaussian processes. J. Appl. Probab. 49, 1102-1118 (2012) (to appear) · Zbl 1259.60039 · doi:10.1239/jap/1354716660
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.