×

Entanglement evolution via quantum resonances. (English) Zbl 1272.81022

Summary: We consider two qubits interacting with local and collective thermal reservoirs. Each spin-reservoir interaction consists of an energy exchange and an energy conserving channel. We prove a resonance representation of the reduced dynamics of the spins, valid for all times \(t \geq 0\), with errors (small interaction) estimated rigorously, uniformly in time. Subspaces associated to non-interacting energy differences evolve independently, partitioning the reduced density matrix into dynamically decoupled clusters of jointly evolving matrix elements. Within each subspace the dynamics is Markovian with a generator determined entirely by the resonance data of the full Hamiltonian. Based on the resonance representation we examine the evolution of entanglement (concurrence). We show that, whenever thermalization takes place, entanglement of any initial state dies out in a finite time and will not return. For a concrete class of initially entangled spin states we find explicit bounds on entanglement survival and death times in terms of the initial state and the resonance data. {
©2011 American Institute of Physics}

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence
35B34 Resonance in context of PDEs

References:

[1] DOI: 10.1088/1751-8113/40/28/S01 · Zbl 1117.81009 · doi:10.1088/1751-8113/40/28/S01
[2] DOI: 10.1063/1.1704002 · doi:10.1063/1.1704002
[3] DOI: 10.1063/1.533334 · Zbl 1037.82029 · doi:10.1063/1.533334
[4] DOI: 10.1103/PhysRevLett.99.160502 · doi:10.1103/PhysRevLett.99.160502
[5] DOI: 10.1103/PhysRevLett.91.070402 · doi:10.1103/PhysRevLett.91.070402
[6] DOI: 10.1063/1.2889716 · Zbl 1152.81333 · doi:10.1063/1.2889716
[7] DOI: 10.1103/PhysRevA.54.3824 · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[8] DOI: 10.1007/978-3-662-02313-6 · doi:10.1007/978-3-662-02313-6
[9] DOI: 10.1103/PhysRevLett.89.277901 · doi:10.1103/PhysRevLett.89.277901
[10] Breuer H.-P., The Theory of Open Quantum Systems (2002)
[11] DOI: 10.1007/BF01608389 · Zbl 0294.60080 · doi:10.1007/BF01608389
[12] DOI: 10.1007/BF01351898 · Zbl 0323.60061 · doi:10.1007/BF01351898
[13] DOI: 10.1023/B:JOSS.0000037208.99352.0a · Zbl 1142.82345 · doi:10.1023/B:JOSS.0000037208.99352.0a
[14] DOI: 10.1007/BF01325208 · doi:10.1007/BF01325208
[15] DOI: 10.1016/0196-8858(81)90045-2 · Zbl 0484.34041 · doi:10.1016/0196-8858(81)90045-2
[16] DOI: 10.1016/0021-9045(85)90028-0 · Zbl 0576.34040 · doi:10.1016/0021-9045(85)90028-0
[17] DOI: 10.1007/s00220-004-1176-6 · Zbl 1113.82038 · doi:10.1007/s00220-004-1176-6
[18] DOI: 10.1103/RevModPhys.81.865 · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[19] Jakšić V., Ann. Inst. H. Poincaré Phys. Théor. 67 (4) pp 425– (1997)
[20] DOI: 10.1007/BF02099252 · Zbl 0852.47038 · doi:10.1007/BF02099252
[21] Merkli M., Quantum Info. Comput. 11 (5) pp 0390– (2011)
[22] DOI: 10.1016/j.jmaa.2006.04.030 · Zbl 1120.81060 · doi:10.1016/j.jmaa.2006.04.030
[23] DOI: 10.1016/j.aop.2007.04.013 · Zbl 1201.81083 · doi:10.1016/j.aop.2007.04.013
[24] DOI: 10.1103/PhysRevLett.98.130401 · Zbl 1228.82060 · doi:10.1103/PhysRevLett.98.130401
[25] DOI: 10.1016/j.aop.2008.07.004 · Zbl 1164.82005 · doi:10.1016/j.aop.2008.07.004
[26] DOI: 10.1103/PhysRevLett.100.220401 · doi:10.1103/PhysRevLett.100.220401
[27] DOI: 10.1103/PhysRevLett.77.1413 · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[28] DOI: 10.1098/rspa.1996.0029 · Zbl 0870.68066 · doi:10.1098/rspa.1996.0029
[29] DOI: 10.1103/PhysRevLett.80.2245 · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[30] DOI: 10.1103/PhysRevLett.93.140404 · doi:10.1103/PhysRevLett.93.140404
[31] DOI: 10.1103/PhysRevB.68.165322 · doi:10.1103/PhysRevB.68.165322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.