×

Stability and bifurcation analysis in a FAST TCP model with feedback delay. (English) Zbl 1267.90029

Summary: This paper focuses on the local stability of a FAST TCP model of Internet congestion control algorithms. Necessary and sufficient stability conditions in terms of key system parameters are given, which can provide exact guideline for setting system parameters. In addition, the complex dynamics of the system is also addressed. We demonstrate that Hopf bifurcation would occur when the gain parameter \(\alpha\) is less than a critical value. Furthermore, the direction and the stability of the bifurcating periodic solutions are determined by applying the normal form theory and the center manifold theorem. Finally, some numerical examples are given to verify the theoretical analysis.

MSC:

90B18 Communication networks in operations research
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
34K18 Bifurcation theory of functional-differential equations
Full Text: DOI

References:

[1] Hollot, C.V., Misra, V., Towsley, D., Gong, W.B.: Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans. Autom. Control 47, 945–959 (2002) · Zbl 1364.93279 · doi:10.1109/TAC.2002.1008360
[2] Low, S.H., Paganini, F., Wang, J., Doyle, J.C.: Linear stability of TCP/RED and a scalable control. Comput. Netw. 43, 633–647 (2003) · Zbl 1078.68542 · doi:10.1016/S1389-1286(03)00304-9
[3] Jin, C., Wei, D.X., Low, S.H.: FAST TCP: motivation, architecture, algorithms, performance. In: Proc. IEEE Infocom., vol. 4, pp. 2490–2501 (2004)
[4] Floyd, S.: HighSpeed TCP for large congestion windows. RFC 3649, IETF Experimental (2003)
[5] Kelly, T., Scalable, T.C.P.: Improving performance in highspeed wide area networks. Comput. Commun. Rev. 33, 83–91 (2003) · doi:10.1145/956981.956989
[6] Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14, 1246–1259 (2006) · doi:10.1109/TNET.2006.886335
[7] Wang, J., Tang, A., Low, S.H.: Local stability of FAST TCP In: IEEE Conference on Decision and Control, vol. 1, pp. 1023–1028 (2004)
[8] Choi, J.Y., Koo, K., Lee, J.S., Low, S.H.: Global stability of FAST TCP in single-link single-source network. In: IEEE Conference on Decision and Control, pp. 1837–1841 (2005)
[9] Choi, J.Y., Koo, K., Wei, D.X., Lee, J.S., Low, S.H.: Global exponential stability of fast TCP. In: IEEE Conference on Decision and Control, pp. 639–643 (2006)
[10] Tan, L.S., Zhang, W., Yuan, C.: On parameter tuning for FAST TCP. IEEE Commun. Lett. 11, 458–460 (2007) · doi:10.1109/LCOMM.2007.070048
[11] Veres, A., Boda, M.: The chaotic nature of TCP congestion control. In: Proc. IEEE Infocom., vol. 3, pp. 1715–1723 (2000)
[12] Ranjan, P., Abed, E., La, R.: Nonlinear instabilities in TCP-RED. IEEE/ACM Trans. Netw. 12, 1079–1092 (2004) · doi:10.1109/TNET.2004.838600
[13] Li, C.G., Chen, G.R., Liao, X.F., Yu, J.B.: Hopf bifurcation in an Internet congestion control model. Chaos Solitons Fractals 19, 853–862 (2004) · Zbl 1058.34090 · doi:10.1016/S0960-0779(03)00269-8
[14] Raina, G.: Local bifurcation analysis of some dual congestion control algorithms. IEEE Trans. Autom. Control 50, 1135–1146 (2005) · Zbl 1365.34122 · doi:10.1109/TAC.2005.852566
[15] Yang, H.Y., Tian, Y.P.: Hopf bifurcation in REM algorithm with communication delay. Chaos Solitons Fractals 25, 1093–1105 (2005) · Zbl 1198.93099 · doi:10.1016/j.chaos.2004.11.085
[16] Michiels, W., Niculescu, S.I.: Stability analysis of a fluid flow model for TCP like behavior. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15, 2277–2282 (2005) · Zbl 1092.93580 · doi:10.1142/S021812740501323X
[17] Ding, D.W., Zhu, J., Luo, X.S.: Hopf bifurcation analysis in a fluid flow model of Internet congestion control algorithm. Nonlinear Anal.: Real World Appl. 10, 824–839 (2009) · Zbl 1167.34334 · doi:10.1016/j.nonrwa.2007.11.006
[18] Hu, H.J., Huang, L.H.: Linear stability and Hopf bifurcation in an exponential RED algorithm model. Nonlinear Dyn. 59, 463–475 (2010) · Zbl 1183.70047 · doi:10.1007/s11071-009-9553-5
[19] Guo, S.T., Deng, S.J., Liu, D.F.: Hopf and resonant double Hopf bifurcation in congestion control algorithm with heterogeneous delays. Nonlinear Dyn. 61, 553–567 (2010) · Zbl 1204.93100 · doi:10.1007/s11071-010-9670-1
[20] Wang, J., Wei, D.X., Choi, J.Y., Low, S.H.: Modelling and stability of FAST TCP. IEEE Wirel. Commun. 143, 331–356 (2007) · Zbl 1129.68351 · doi:10.1007/978-0-387-48945-2_14
[21] Wei, J.J., Velarde, M.G.: Bifurcation analysis and existence of periodic solutions in a simple neural network with delays. Chaos 14, 940–953 (2004) · Zbl 1080.34064 · doi:10.1063/1.1768111
[22] Song, Y., Han, M., Wei, J.J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D 200, 185–204 (2005) · Zbl 1062.34079 · doi:10.1016/j.physd.2004.10.010
[23] Yu, W.W., Cao, J.D.: Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays. Phys. Lett. A 351, 64–78 (2006) · Zbl 1234.34047 · doi:10.1016/j.physleta.2005.10.056
[24] Mao, X.C., Hu, H.Y.: Hopf bifurcation analysis of a four-neuron network with multiple time delays. Nonlinear Dyn. 55, 95–112 (2009) · Zbl 1169.92004 · doi:10.1007/s11071-008-9348-0
[25] Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, Berlin (1993) · Zbl 0787.34002
[26] Kolmanovskii, V.B., Nosov, V.: Stability of Functional Differential Equations. Academic Press, San Diego (1986) · Zbl 0593.34070
[27] Qin, Y.X., Liu, Y.Q., Wang, L.: Stability of Motion of Dynamical Systems with Time Lag. Science Press, Beijing (1989)
[28] Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, San Diego (1963) · Zbl 0105.06402
[29] Levitskaya, I.S.: Stability domain of a linear differential equation with two delays. Comput. Math. Appl. 51, 153–159 (2006) · Zbl 1111.34054 · doi:10.1016/j.camwa.2005.05.011
[30] Wang, Z.H.: An iteration method for calculating the periodic solution of time-delay systems after a Hopf bifurcation. Nonlinear Dyn. 53, 1–11 (2008) · Zbl 1179.34071 · doi:10.1007/s11071-007-9290-6
[31] Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.