×

A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations. (English) Zbl 1267.76083

Summary: A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential equations. In this paper, we discuss some extensions of ASPIN for solving steady-state incompressible Navier-Stokes equations with high Reynolds numbers in the velocity-pressure formulation. The key idea of ASPIN is to find the solution of the original system by solving a nonlinearly preconditioned system that has the same solution as the original system, but with more balanced nonlinearities. Our parallel nonlinear preconditioner is constructed using a nonlinear overlapping additive Schwarz method. To show the robustness and scalability of the algorithm, we present some numerical results obtained on a parallel computer for two benchmark problems: a driven cavity flow problem and a backward-facing step problem with high Reynolds numbers. The sparse nonlinear system is obtained by applying a \(Q_1 - Q_1\) Galerkin least squares finite element discretization on two-dimensional unstructured meshes. We compare our approach with an inexact Newton method using different choices of forcing terms. Our numerical results show that ASPIN has good convergence and is more robust than the traditional inexact Newton method with respect to certain parameters such as the Reynolds number, the mesh size, and the number of processors.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics

Software:

PETSc
Full Text: DOI

References:

[1] DE Almeida, V. F.; Derby, J. J., Construction of solution curves for large two-dimensional problems of steady-state flows of incompressible fluids, SIAM J. Sci. Comput., 22, 285-311 (2000) · Zbl 0973.76042
[2] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002; S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002
[3] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis in the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041
[4] Cai, X.-C.; Gropp, W. D.; Keyes, D. E.; Melvin, R. G.; Young, D. P., Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19, 246-265 (1998) · Zbl 0917.76035
[5] Cai, X.-C.; Keyes, D. E., Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 24, 183-200 (2002) · Zbl 1015.65058
[6] Cai, X.-C.; Keyes, D. E.; Marcinkowski, L., Nonlinear additive Schwarz preconditioners and applications in computational fluid dynamics, Int. J. Numer. Meth. Fluids, 40, 1463-1470 (2002) · Zbl 1025.76040
[7] X.-C. Cai, D.E. Keyes, D.P. Young, A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct flows, in: Proceedings of the 13th International Conference on Domain Decomposition Methods, France, October 9-12, 2000; X.-C. Cai, D.E. Keyes, D.P. Young, A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct flows, in: Proceedings of the 13th International Conference on Domain Decomposition Methods, France, October 9-12, 2000 · Zbl 1201.76107
[8] Coffey, T. S.; Kelley, C. T.; Keyes, D. E., Pseudo-transient continuation and differential-algebraic equations, SIAM J. Sci. Comput., 25, 553-569 (2003) · Zbl 1048.65080
[9] Coleman, T. F.; Moré, J. J., Estimation of sparse Jacobian matrices and graph coloring problem, SIAM J. Numer. Anal., 20, 209-243 (1983) · Zbl 0527.65033
[10] Dryja, M.; Hackbusch, W., On the nonlinear domain decomposition method, BIT, 296-311 (1997) · Zbl 0891.65126
[11] Dennis, J.; Schnabel, R., Numerical Methods for Unconstrained Optimization and Nonlinear EquatioSIAM (1996), SIAM: SIAM Philadelphia · Zbl 0847.65038
[12] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 400-408 (1982) · Zbl 0478.65030
[13] M. Dumett, P. Vassilevski, C.S. Woodward, A multigrid method for nonlinear unstructured finite element elliptic equations, SIAM J. Sci. Comput. 2003, submitted; M. Dumett, P. Vassilevski, C.S. Woodward, A multigrid method for nonlinear unstructured finite element elliptic equations, SIAM J. Sci. Comput. 2003, submitted
[14] Elman, H. C.; Howle, V. E.; Shadid, J. N.; Tuminaro, R. S., A parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations, J. Comput. Phy., 187, 504-523 (2003) · Zbl 1061.76058
[15] Eisenstat, S. C.; Walker, H. F., Globally convergent inexact Newton methods, SIAM J. Opt., 4, 393-422 (1994) · Zbl 0814.65049
[16] Eisenstat, S. C.; Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17, 16-32 (1996) · Zbl 0845.65021
[17] Franca, L. P.; Frey, S. L., Stabilized finite element method: II. The incompressible Navier-Stokes equation, Comput. Meth. Appl. Mech. Eng., 99, 209-233 (1992) · Zbl 0765.76048
[18] Franca, L. P.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element method: I. Application to the advective-diffusive model, Comput. Meth. Appl. Mech. Eng., 95, 253-276 (1992) · Zbl 0759.76040
[19] Gartling, D. K., A test problem for outflow boundary conditions- flow over a backward-facing step, Int. J. Numer. Meth. Fluids, 11, 953-967 (1990)
[20] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solution for incompressible flow using the Navier-Stokes equations and the multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[21] Gresho, P. M.; Gartling, D. K.; Torczynski, J. R.; Cliffe, K. A.; Winters, K. H.; Garratt, T. J.; Spence, A.; Goodrich, J. W., Is the steady viscous incompressible two-dimensional flow over a backward facing step at Re=800 stable, Int. J. Numer. Meth. Fluids, 17, 501-541 (1993) · Zbl 0784.76050
[22] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows (1989), Academics Press: Academics Press New York · Zbl 0697.76031
[23] Gunzburger, M. D.; Peterson, J., Predictor and steplength selection in continuation methods for the Navier-Stokes equations, Comput. Math. Appl., 22, 73-81 (1991) · Zbl 0829.76049
[24] Hannani, S. K.; Stanislas, M.; Dupont, P., Incompressible Navier-Stokes computation with SUPG and GLS formulations - a comparison study, Comput. Meth. Appl. Mech. Eng., 124, 153-170 (1995)
[25] Hendriana, D.; Bethe, L. J., On upwind methods for parabolic finite elements in incompressible flows, Int. J. Numer. Meth. Eng., 47, 317-340 (2000) · Zbl 0966.76047
[26] Kelley, C. T.; Keyes, D. E., Convergence analysis of pseudo-transient continuation, SIAM J. Sci. Comput., 35, 508-523 (1998) · Zbl 0911.65080
[27] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[28] Klawonn, A.; Pavarino, L., Overlapping Schwarz methods for mixed linear elasticity and Stokes problems, Comput. Meth. Appl. Meth. Eng., 165, 233-245 (1998) · Zbl 0948.74077
[29] Layton, W.; Lee, H. K.; Peterson, J., Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method, SIAM J. Sci. Comput., 20, 1-12 (1998) · Zbl 0932.76033
[30] Nocedal, J.; Wright, S. J., Numerical Optimization (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0930.65067
[31] Pernice, M.; Tocci, M. D., A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 23, 398-418 (2001) · Zbl 0995.76061
[32] Reddy, J. N.; Gartling, D. K., The Finite Element Method in Heat Transfer and Fluid Dynamics (2000), CRC Press: CRC Press Florida · Zbl 0978.76003
[33] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7, 856-869 (1986) · Zbl 0599.65018
[34] Shadid, J. N.; Tuminaro, R. S.; Walker, H. F., An inexact Newton method for fully coupled solution of the Navier-Stokes equations with heat and mass transport, J. Comput. Phys., 137, 155-185 (1997) · Zbl 0898.76066
[35] Smith, B. F.; Bjørstad, P.; Gropp, W. D., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0857.65126
[36] Tuminaro, R. S.; Walker, H. F.; Shadid, J. N., On backtracking failure in Newton-GMRES methods with a demonstration for the Navier-Stokes Equations, J. Comput. Phys., 180, 549-558 (2002) · Zbl 1143.76489
[37] Toselli, A.; Widlund, O., Domain Decomposition Methods - Algorithms and Theory (2004), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.