×

Stationary correlations for the 1D KPZ equation. (English) Zbl 1266.82045

Summary: We study exact stationary properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) equation by using the replica approach. The stationary state for the KPZ equation is realized by setting the initial condition the two-sided Brownian motion (BM) with respect to the space variable. Developing techniques for dealing with this initial condition in the replica analysis, we elucidate some exact nature of the height fluctuation for the KPZ equation. In particular, we obtain an explicit representation of the probability distribution of the height in terms of the Fredholm determinants. Furthermore from this expression, we also get the exact expression of the space-time two-point correlation function.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35Q82 PDEs in connection with statistical mechanics

References:

[1] Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[2] Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995) · Zbl 0838.58023
[3] Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998) · Zbl 1064.37500
[4] Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) · Zbl 0969.15008 · doi:10.1007/s002200050027
[5] Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[6] Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000) · doi:10.1103/PhysRevLett.84.4882
[7] Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–541 (2000) · Zbl 0976.82043 · doi:10.1023/A:1018615306992
[8] Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005) · doi:10.1088/0305-4470/38/33/L01
[9] Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007) · Zbl 1136.82028 · doi:10.1007/s10955-007-9383-0
[10] Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech., P07007 (2007)
[11] Ferrari, P.: From interacting particle systems to random matrices. J. Stat. Mech., P10016 (2010)
[12] Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality, and random matrices. J. Phys. A 4, 403001 (2010) · Zbl 1202.82058
[13] Sasamoto, T., Spohn, H.: The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class. J. Stat. Mech., P11013 (2010)
[14] Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl. 1, 1130001 (2012) · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[15] Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010) · doi:10.1103/PhysRevLett.104.230601
[16] Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. 1, 34 (2011) · doi:10.1038/srep00034
[17] Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012) · Zbl 1246.82109 · doi:10.1007/s10955-012-0503-0
[18] Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010) · doi:10.1103/PhysRevLett.104.230602
[19] Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523–542 (2010) · Zbl 1204.35137 · doi:10.1016/j.nuclphysb.2010.03.026
[20] Sasamoto, T., Spohn, H.: The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140, 209–231 (2010) · Zbl 1197.82093 · doi:10.1007/s10955-010-9990-z
[21] Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[22] Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008) · Zbl 1148.60080 · doi:10.1007/s00220-008-0443-3
[23] Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009) · Zbl 1184.60036 · doi:10.1007/s00220-009-0761-0
[24] Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997) · Zbl 0874.60059 · doi:10.1007/s002200050044
[25] Corwin, I., Quastel, J.: Crossover distributions at the edge of the rarefaction fan. arXiv: 1006.1338 · Zbl 1285.82034
[26] Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. A 381, 17–31 (1982) · doi:10.1098/rspa.1982.0056
[27] Alberts, T., Khanin, K., Quastel, J.: Intermediate disorder regime for directed polymers in dimension 1+1. Phys. Rev. Lett. 105, 090603 (2010) · Zbl 1292.82014 · doi:10.1103/PhysRevLett.105.090603
[28] Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90, 20002 (2010) · doi:10.1209/0295-5075/90/20002
[29] Kardar, M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987) · doi:10.1016/0550-3213(87)90203-3
[30] Dotsenko, V.: Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers. Europhys. Lett. 90, 20003 (2010) · doi:10.1209/0295-5075/90/20003
[31] Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech., P07010 (2010)
[32] Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963) · Zbl 0138.23001 · doi:10.1103/PhysRev.130.1605
[33] McGuire, J.B.: Study of exactly soluble one-dimensional N-body problems. J. Math. Phys. 5, 622–636 (1964) · Zbl 0131.43804 · doi:10.1063/1.1704156
[34] Calabrese, P., Le Doussal, P.: An exact solution for the KPZ equation with flat initial conditions. Phys. Rev. Lett. 106, 250603 (2011)
[35] Le Doussal, P., Calabrese, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech., P06001 (2012)
[36] Imamura, T., Sasamoto, T.: Replica approach to the KPZ equation with half brownian motion initial condition. J. Phys. A, Math. Theor. 44, 385001 (2011) · Zbl 1227.82057 · doi:10.1088/1751-8113/44/38/385001
[37] Prolhac, S., Spohn, H.: Two-point generating function of the free energy for a directed polymer in a random medium. J. Stat. Mech., P01031 (2011) · Zbl 1273.81085
[38] Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech., P03020 (2011) · Zbl 1273.81085
[39] Borodin, A., Corwin, I.: Macdonald processes. arXiv: 1111.4408 · Zbl 1304.82047
[40] O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–458 (2012) · Zbl 1245.82091 · doi:10.1214/10-AOP632
[41] Borodin, A., Corwin, I., Ferrari, P.L.: Free energy fluctuations for directed polymers in random media in 1+1 dimension. arXiv: 1204.1024 · Zbl 1295.82035
[42] Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. arXiv: 1207.5035 · Zbl 1304.82048
[43] Krug, J., Spohn, H.: Kinetic roughening of growing interfaces. In: Godrèche, C. (ed.) Solids Far from Equilibrium: Growth, Morphology and Defects, pp. 479–582. Cambridge University Press, Cambridge (1992)
[44] Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: Sidoravicius, V. (ed.) In and out of Equilibrium. Progress in Probability, vol. 51, pp. 185–204. Birkhäuser, Boston (2002) · Zbl 1015.60093
[45] Prähofer, M., Spohn, H.: Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004) · Zbl 1157.82363 · doi:10.1023/B:JOSS.0000019810.21828.fc
[46] Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006) · Zbl 1118.82032 · doi:10.1007/s00220-006-1549-0
[47] Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017–1070 (2010) · Zbl 1194.82067
[48] Imamura, T., Sasamoto, T.: Exact solution for the stationary Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 108, 190603 (2012) · doi:10.1103/PhysRevLett.108.190603
[49] Balázs, M., Quastel, J., Seppäläinen, T.: Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Am. Math. Soc. 24, 683–708 (2011) · Zbl 1227.60083 · doi:10.1090/S0894-0347-2011-00692-9
[50] Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79, 871–915 (2010) · Zbl 1208.65182
[51] Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16, 803–866 (2010) · Zbl 1222.60013
[52] Prolhac, S., Spohn, H.: The height distribution of the KPZ equation with sharp wedge initial condition: numerical evaluations. Phys. Rev. E 84, 011119 (2011) · Zbl 1273.81085 · doi:10.1103/PhysRevE.84.011119
[53] Hairer, M.: Solving the KPZ equation. arXiv: 1109.6811 · Zbl 1281.60060
[54] Oxford, S.: The hamiltonian of the quantized non-linear Schrödinger equation. Ph.D. Thesis, UCLA (1979) · Zbl 0418.18006
[55] Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 145, 139–173 (1997) · Zbl 0873.43007 · doi:10.2307/2951825
[56] Prolhac, S., Spohn, H.: The propagator of the attractive delta-Bose gas in one dimension. J. Math. Phys. 52, 122106 (2011) · Zbl 1273.81085 · doi:10.1063/1.3663431
[57] Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503–544 (2004) · Zbl 1123.82352 · doi:10.1016/j.nuclphysb.2004.07.030
[58] Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977) · doi:10.1103/PhysRevA.16.732
[59] Colaiori, F., Moore, M.A.: Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 86, 3946–3949 (2001) · doi:10.1103/PhysRevLett.86.3946
[60] Katzav, E., Schwartz, M.: Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation. Phys. Rev. E 69, 052603 (2004) · doi:10.1103/PhysRevE.69.052603
[61] Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Non-perturbative renormalization group for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 104, 150601 (2010) · doi:10.1103/PhysRevLett.104.150601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.