×

Fermion particle production in dynamical Casimir effect in a three-dimensional box. (English) Zbl 1260.81221

Summary: In this paper, we investigate the problem of fermion creation inside a three-dimensional cubic box. We present an appropriate wave function which satisfies the Dirac equation in this geometry with MIT bag model boundary condition. We consider the box with oscillating walls and introduce the time evolution of the quantized field by expanding it over the instantaneous basis. We explain how we can obtain the average number of particles created. In this regard, we find the Bogoliubov coefficients. We consider an oscillation and determine the coupling conditions between different modes that can be satisfied depending on the cavity’s spectrum. Assuming the parametric resonance case we obtain an expression for the mean number of created fermions in each mode of an oscillation and their dynamical Casimir energy.

MSC:

81T55 Casimir effect in quantum field theory

References:

[1] Casimir H. B. G., Proc. K. Ned. Akad. Wet. 51 pp 793–
[2] Mostepanenko V. M., The Casimir Effect and Its Applications (1997)
[3] DOI: 10.1016/0370-1573(86)90020-7 · doi:10.1016/0370-1573(86)90020-7
[4] DOI: 10.1119/1.19138 · doi:10.1119/1.19138
[5] DOI: 10.1016/S0370-1573(01)00015-1 · Zbl 0972.81212 · doi:10.1016/S0370-1573(01)00015-1
[6] DOI: 10.1017/CBO9780511622632 · doi:10.1017/CBO9780511622632
[7] DOI: 10.1098/rspa.1977.0057 · Zbl 1013.78500 · doi:10.1098/rspa.1977.0057
[8] DOI: 10.1088/0305-4470/12/12/007 · doi:10.1088/0305-4470/12/12/007
[9] DOI: 10.1088/0305-4470/13/10/017 · doi:10.1088/0305-4470/13/10/017
[10] DOI: 10.1088/0264-9381/16/11/315 · Zbl 0946.83019 · doi:10.1088/0264-9381/16/11/315
[11] DOI: 10.1088/0305-4470/25/13/031 · Zbl 0758.35064 · doi:10.1088/0305-4470/25/13/031
[12] Jauregui R., Mod. Phys. Lett. A 10 pp 7–
[13] DOI: 10.1103/PhysRevA.50.1027 · doi:10.1103/PhysRevA.50.1027
[14] DOI: 10.1103/PhysRevA.53.2664 · doi:10.1103/PhysRevA.53.2664
[15] DOI: 10.1103/PhysRevLett.77.615 · doi:10.1103/PhysRevLett.77.615
[16] DOI: 10.1103/PhysRevA.57.2311 · doi:10.1103/PhysRevA.57.2311
[17] DOI: 10.1088/0305-4470/31/49/008 · Zbl 0925.81452 · doi:10.1088/0305-4470/31/49/008
[18] DOI: 10.1103/PhysRevA.51.2537 · doi:10.1103/PhysRevA.51.2537
[19] DOI: 10.1142/S0217732301003772 · doi:10.1142/S0217732301003772
[20] DOI: 10.1142/S0217732301004315 · Zbl 1138.81584 · doi:10.1142/S0217732301004315
[21] DOI: 10.1103/PhysRevA.82.032517 · doi:10.1103/PhysRevA.82.032517
[22] Bogolioubov P. N., Ann. Inst. Henri Poincaré 8 pp 163–
[23] DOI: 10.1103/PhysRevD.9.3471 · doi:10.1103/PhysRevD.9.3471
[24] DOI: 10.1103/PhysRevD.10.2599 · doi:10.1103/PhysRevD.10.2599
[25] DOI: 10.1142/S0217751X12500388 · Zbl 1247.81452 · doi:10.1142/S0217751X12500388
[26] DOI: 10.1103/PhysRevD.82.045030 · doi:10.1103/PhysRevD.82.045030
[27] J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, New York, 1993) p. 105.
[28] DOI: 10.1103/PhysRevA.64.013808 · doi:10.1103/PhysRevA.64.013808
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.