×

Upper bound on the density of Ruelle resonances for Anosov flows. (English) Zbl 1260.37016

This article is a continuation of the approach initiated some years ago by the authors and collaborators in several papers [the first author and N. Roy, Nonlinearity 19, No. 6, 1233–1252 (2006; Zbl 1190.37024); the authors and N. Roy, Open Math. J. 1, 35–81 (2008; Zbl 1177.37032); the first author, Nonlinearity 24, No. 5, 1473–1498 (2011; Zbl 1233.37018)]. Namely, it deals with the use of microlocal analysis, usually confined to problems from quantum mechanics, to study a “classical” dynamical system given by a smooth map or a flow on a manifold \(X\).
The idea of using functional-analytical methods to study classical dynamical systems dates back to D. Ruelles’s work in the 70’s, who showed that, given a dynamical system \(\phi:X\rightarrow X\), the spectral properties of the composition operator (or an operator related to it) \(u\mapsto u\circ \phi\), acting on a suitable space of functions or distributions, provide a lot of statistical information about the system. In particular, the eigenvalues of this operator (called Ruelle resonances) are highly related to the decay of statistical correlation functions for large time.
These spectral methods have been extensively used and developed by many authors (V. Baladi, M. Blank, S. Gouëzel, G. Keller, K. Liverani, M. Tsujii, etc.). The originality of the approach developed by the authors of the paper under review relies on the fundamental remark that the the composition operator is a Fourier integral operator.
This fact allowed the authors to apply powerfull techniques from microlocal analysis to the study of different hyperbolic systems. In the paper under review, the authors consider an “Anosov flow” on a compact Riemannian manifold \(X\), i.e., the flow \(\phi_t\) of a smooth vector field \(V\) such that the tangent bundle \(TX\) admits a \(d\phi_t\)-invariant splitting \(TX=E_s\oplus E_u\oplus E_0\) into stable, unstable and neutral subbundles \(E_s\), \(E_u\), and \(E_0\) respectively, with the property that the neutral subbundle \(E_0(x)\) is spanned by \(V(x)\) at each point \(x\in X\).
The authors proves mainly three theorems. The first two results state that the differential operator \((-i)V\) acting on a suitable “anisotropic Sobolev space” of functions on \(X\) has, close to the real axis, a discrete spectrum consisting of eigenvalues with finite multiplicities (the Ruelle resonances). This result is very close to the one in [O. Butterley and C. Liverani, J. Mod. Dyn. 1, No. 2, 301–322 (2007; Zbl 1144.37011)]. The main result of the paper is an upper bound for the density of these resonances close to the real axis and for large real parts.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
47G30 Pseudodifferential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds
35S30 Fourier integral operators applied to PDEs
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Aguilar J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269–279 (1971) · Zbl 0219.47011 · doi:10.1007/BF01877510
[2] Arnold, V.I., Avez, A.: Méthodes ergodiques de la mécanique classique. Paris: Gauthier Villars, 1967
[3] Baladi, V.: Anisotropic Sobolev spaces and dynamical transfer operators: C foliations. In: Kolyada, S. (ed.) et al., Algebraic and topological dynamics. Proceedings of the conference, Bonn, Germany, May 1-July 31, 2004. Providence, RI: Amer. Math. Soc., Contemporary Mathematics, 385, 2005, pp. 123–135 · Zbl 1158.37304
[4] Baladi V., Tsujii M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) · Zbl 1138.37011 · doi:10.5802/aif.2253
[5] Balslev E., Combes J.M.: Spectral properties of many-body Schrödinger operators with dilatation- analytic interactions. Commun. Math. Phys. 22, 280–294 (1971) · Zbl 0219.47005 · doi:10.1007/BF01877511
[6] Blank M., Keller G., Liverani C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) · Zbl 1021.37015 · doi:10.1088/0951-7715/15/6/309
[7] Bonatti C., Guelman N.: Transitive anosov flows and axiom-a diffeomorphisms. Erg. Th. Dyn. Sys. 29(3), 817–848 (2009) · Zbl 1173.37028 · doi:10.1017/S0143385708080498
[8] Borthwick, D.: Spectral theory of infinite-area hyperbolic surfaces. Basel-Boston: Birkhauser, 2007 · Zbl 1130.58001
[9] Brin, M., Stuck, G.: Introduction to Dynamical Systems. Cambridge: Cambridge University Press, 2002 · Zbl 1314.37002
[10] Butterley O., Liverani C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1(2), 301–322 (2007) · Zbl 1144.37011 · doi:10.3934/jmd.2007.1.301
[11] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators, with application to quantum mechanics and global geometry. (Springer Study ed.). Texts and Monographs in Physics. Berlin-Heidelberg-New York: Springer-Verlag, 1987 · Zbl 0619.47005
[12] Davies, E.B.: Linear operators and their spectra. Cambridge: Cambridge University Press, 2007 · Zbl 1138.47001
[13] Dolgopyat D.: On decay of correlations in Anosov flows. Ann. of Math. (2) 147(2), 357–390 (1998) · Zbl 0911.58029 · doi:10.2307/121012
[14] Dolgopyat D.: On mixing properties of compact group extensions of hyperbolic systems. Israel J. Math. 130, 157–205 (2002) · Zbl 1005.37005 · doi:10.1007/BF02764076
[15] Faure F.: Semiclassical origin of the spectral gap for transfer operators of a partially expanding map. Nonlinearity 24, 1473–1498 (2011) · Zbl 1233.37018 · doi:10.1088/0951-7715/24/5/005
[16] Faure F., Roy N.: Ruelle-Pollicott resonances for real analytic hyperbolic map. Nonlinearity 19, 1233–1252 (2006) · Zbl 1190.37024 · doi:10.1088/0951-7715/19/6/002
[17] Faure F., Roy N., Sjöstrand J.: A semiclassical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. Journal. 1, 35–81 (2008) · Zbl 1177.37032 · doi:10.2174/1874117700801010035
[18] Field M., Melbourne I., Török A.: Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166(1), 269–291 (2007) · Zbl 1140.37004 · doi:10.4007/annals.2007.166.269
[19] Gérard C., Sjöstrand J.: Resonances en limite semiclassique et exposants de Lyapunov. Commun. Math. Phys. 116(2), 193–213 (1988) · Zbl 0698.35118 · doi:10.1007/BF01225255
[20] Ghys E.: Flots d’Anosov dont les feuilletages stables sont différentiables. Ann. Sci. École Norm. Sup. (4) 20(2), 251–270 (1987) · Zbl 0663.58025
[21] Ghys E.: Déformations de flots d’Anosov et de groupes fuchsiens. Ann. Inst. Fourier (Grenoble) 42(1-2), 209–247 (1992) · Zbl 0759.58036 · doi:10.5802/aif.1290
[22] Gouzel S., Liverani C.: Banach spaces adapted to Anosov systems. Erg. Th. Dyn. Sys. 26, 189–217 (2005) · Zbl 1088.37010 · doi:10.1017/S0143385705000374
[23] Grigis, A., Sjöstrand, J.: Microlocal analysis for differential operators. Volume 196 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1994 · Zbl 0804.35001
[24] Guillope L., Lin K., Zworski M.: The Selberg zeta function for convex co-compact. Schottky groups. Commun. Math. Phys. 245(1), 149–176 (2004) · Zbl 1075.11059 · doi:10.1007/s00220-003-1007-1
[25] Helffer, B., Sjöstrand, J.: Résonances en limite semi-classique. (resonances in semi-classical limit). Memoires de la S.M.F., 24/25, 1986 · Zbl 0631.35075
[26] Hitrik, M., Sjöstrand, J.: Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2. Ann. Scient. de l’école normale supérieure. http://arxiv.org/abs/math/0703394v1 [math.SP], 2008
[27] Hurder S., Katok A.: Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Publ. Math., Inst. Hautes étud. Sci. 72, 5–61 (1990) · Zbl 0725.58034 · doi:10.1007/BF02699130
[28] Hörmander L.: Fourier integral operators. I. Acta Math. 127(1), 79–183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[29] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press, 1995 · Zbl 0878.58020
[30] Leboeuf P.: Periodic orbit spectrum in terms of Ruelle-Pollicott resonances. Phys. Rev. E (3) 69(2), 026204 (2004) · doi:10.1103/PhysRevE.69.026204
[31] Liverani C.: On contact Anosov flows. Ann. of Math. (2) 159(3), 1275–1312 (2004) · Zbl 1067.37031 · doi:10.4007/annals.2004.159.1275
[32] Liverani C.: Fredholm determinants, Anosov maps and Ruelle resonances. Disc. Cont. Dyn. Sys. 13(5), 1203–1215 (2005) · Zbl 1160.37330 · doi:10.3934/dcds.2005.13.1203
[33] Martinez A.: An Introduction to Semiclassical and Microlocal Analysis. Universitext. New York, NY, Springer (2002) · Zbl 0994.35003
[34] McDuff D., Salamon D: Introduction to symplectic topology, 2nd edition. Clarendon press, Oxford (1998) · Zbl 0844.58029
[35] Nonnenmacher S.: Some open questions in ’wave chaos’. Nonlinearity 21(8), T113–T121 (2008) · Zbl 1154.81341 · doi:10.1088/0951-7715/21/8/T01
[36] Nonnenmacher S., Zworski M.: Distribution of resonances for open quantum maps. Comm. Math. Phys. 269(2), 311–365 (2007) · Zbl 1114.81043 · doi:10.1007/s00220-006-0131-0
[37] Pesin, Y.: Lectures on Partial Hyperbolicity and Stable Ergodicity. Zünch: European Mathematical Society, 2004 · Zbl 1098.37024
[38] Reed, M., Simon, B.: Mathematical methods in physics, Vol. I: Functional Analysis. New York: Academic Press, 1972 · Zbl 0242.46001
[39] Reed, M., Simon, B.: Mathematical methods in physics, Vol. IV: Analysis of operators. New York: Academic Press, 1978 · Zbl 0401.47001
[40] Ruelle, D.: Thermodynamic formalism. The mathematical structures of classical equilibrium. Statistical mechanics. With a foreword by Giovanni Gallavotti. Reading, MA: Addison-Wesley Publishing Company, 1978 · Zbl 0401.28016
[41] Ruelle D.: Locating resonances for axiom A dynamical systems. J. Stat. Phys. 44, 281–292 (1986) · Zbl 0655.58026 · doi:10.1007/BF01011300
[42] Cannas Da Salva, A.: Lectures on Symplectic Geometry. Berlin-Heidelberg-New York: Springer, 2001 · Zbl 1016.53001
[43] Sjöstrand J.: Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60(1), 1–57 (1990) · Zbl 0702.35188 · doi:10.1215/S0012-7094-90-06001-6
[44] Sjöstrand, J.: Density of resonances for strictly convex analytic obstacles. Canad. J. Math. 48(2), 397–447, (1996) (with an appendix by M. Zworski) · Zbl 0863.35072
[45] Sjöstrand, J.: Lecture on resonances. Available on http://www.math.polytechnique.fr/\(\sim\)sjoestrand/NowListe070411.html , 2002
[46] Sjöstrand J.: Resonances associated to a closed hyperbolic trajectory in dimension 2. Asym. Anal. 36(2), 93–113 (2003) · Zbl 1060.35096
[47] Sjöstrand J., Zworski M.: Fractal upper bounds on the density of semiclassical resonances. Duke Math. J. 137, 381–459 (2007) · Zbl 1201.35189 · doi:10.1215/S0012-7094-07-13731-1
[48] Taylor, M.: Partial differential equations, Vol. I. Berlin-Heidelberg-New York: Springer, 1996 · Zbl 0869.35001
[49] Taylor, M.: Partial differential equations, Vol. II. Berlin-Heidelberg-New York: Springer, 1996 · Zbl 0869.35001
[50] Tsujii M.: Decay of correlations in suspension semi-flows of angle-multiplying maps. Erg. Th. Dyn. Sys. 28, 291–317 (2008) · Zbl 1171.37318 · doi:10.1017/S0143385707000430
[51] Tsujii M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23, 1495 (2010) · Zbl 1200.37025 · doi:10.1088/0951-7715/23/7/001
[52] Tsujii, M.: Contact Anosov flows and the FBI transform. http://arXiv.org/abs/1010.0396v2 [math.DS], 2010
[53] Wong, M.W.: An introduction to pseudo-differential operators. 2nd ed., River Edge, NJ: World Scientific Publishing Co. Inc., 1999 · Zbl 0926.35167
[54] Wunsch J., Zworski M.: The FBI transform on compact $${\(\backslash\)mathcal{C}\^\(\backslash\)infty}$$ manifolds. Trans. Am. Math. Soc. 353(3), 1151–1167 (2001) · Zbl 0974.35005 · doi:10.1090/S0002-9947-00-02751-3
[55] Zelditch, S.: Quantum ergodicity and mixing of eigenfunctions. Elsevier Encyclopedia of Math. Phys., vol. 1, Oxford: Elsevier, 2006, pp. 183–196
[56] Zworski M.: Resonances in physics and geometry. Notices of the A.M.S. 46(3), 319–328 (1999) · Zbl 1177.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.