×

Global attractor for a class of coupled nonlinear Schrödinger equations. (English) Zbl 1260.35205

Summary: In this paper, the long time behavior of solution for a class of coupled nonlinear Schrödinger equation with zero order dissipation is studied. We first construct the global weak attractor for this system in \(H^2_{\text{per}}(\Omega)\times H^2_{\text{per}}(\Omega)\). Then, by exact analysis of the energy equation, we shown that the global weak attractor is actually the global strong attractor in \(H^2_{\text{per}}(\Omega)\times H^2_{\text{per}}(\Omega)\). We also estimate the uniform Lyapunov exponents on the attractor, which allows us to prove its finite dimensional property.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B41 Attractors
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] D. J. Benney, and A. C. Newell, The propagation of nonlinear wave envelopes. Journal of Mathematical Physics, 46(2) (1967), 133-139. · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[2] Z. D. Dai, B. L. Guo, Global attractor of nonlinear strain wave-guides, Acta Math Sci, 20(B) (2000), 322-334. · Zbl 0963.35025
[3] J. M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Ann Inst H Poincaré Anal Non Linearie, 5(4) (1988), 365-405. · Zbl 0659.35019 · doi:10.1016/S0294-1449(16)30343-2
[4] O. Goubet, L. Molinet, Global attractor for weakly damped nonlinear Schrödinger equations in L2(ℝ), Nonlinear Analysis, 7(1) (2009), 317-320. · Zbl 1170.35534 · doi:10.1016/j.na.2008.10.078
[5] B. L. Guo, S. B. Tan, Global smooth solution for nonlinear evolution equation of Hirota type, Science in China, 35(A) (1992), 804-811. · Zbl 0764.35089
[6] T. Kanna, and M. Lakshmanan, Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons, Physical Review E, 67(7) (2003), 046617.
[7] P. Liu, and X. N. Gao, Symmetry analysis of nonlinear incompressible nonhydrostatic Boussinesq equations. Communications in Theoretical Physics, 53(4) (2010), 609-614. · Zbl 1252.76072 · doi:10.1088/0253-6102/53/4/04
[8] P. Liu, Z. L. Li, S. Y. Lou, A class of coupled nonlinear Schrödinger equations: Painlevé property, exact solutions, and application to atmospheric gravity waves, Applied Mathematics and Mechanics, 31(11) (2010), 1383-1404. · Zbl 1203.86012 · doi:10.1007/s10483-010-1370-6
[9] R. T. Mattea, and E. S. Gordon, Evolution of solitary marginal disturbances in baroclinic frontal geostrophic dynamics with dissipation and time-varying background flow, Proceedings of the Royal Society A, 463 (2007), 1749-1769. · Zbl 1347.76026 · doi:10.1098/rspa.2007.1850
[10] A. V. Porubov, and D. F. Parker, Some general periodic solutions to coupled nonlinear Schrödinger equations, Wave Motion, 29(2) (1999), 97-109. · Zbl 1074.35579 · doi:10.1016/S0165-2125(98)00033-X
[11] M. Poulou, N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all ℝ, Nonlinear Analysis, 7(4) (2011), 2548-2562. · Zbl 1213.35124 · doi:10.1016/j.na.2010.12.009
[12] V. I. Pulov, Solutions and laws of conservation for coupled nonlinear Schrödinger equations: Lie group analysis, Physical Review E, 57(3) (1998), 3468-3477. · doi:10.1103/PhysRevE.57.3468
[13] R. Radhakrishan, R. Sahadevan, and M. Lakshmanan, Integrability and singularity structure of coupled nonlinear Schrödinger equations. Chaos, Solitons and Fractals, 5(12) (1995), 2315-2327. · Zbl 1080.35546 · doi:10.1016/0960-0779(94)E0101-T
[14] R. Sahadevan, K. M. Tamizhmani, and M. Lakshmanan, Painlevé analysis and integrability of coupled non-linear Schrödinger equations, Journal of Physics A, 19(10) (1986), 1783-1791. · Zbl 0621.35081 · doi:10.1088/0305-4470/19/10/019
[15] B. K. Tan, Collision interactions of envelope Rossby solitons in a barotropic atmosphere. Journal of the Atmospheric Sciences, 53(11) (1996), 1604-1616. · doi:10.1175/1520-0469(1996)053<1604:CIOERS>2.0.CO;2
[16] B. K. Tan, and D. P. Ying, Propagation of envelope solitons in baroclinic atmosphere, Advances in Atmospheric Sciences, 12(4) (1995), 439-448. · doi:10.1007/BF02657004
[17] X. Y. Tang, and P. K. Shukla, Solution of the one-dimensional spatially inhomogeneous cubicquintic nonlinear Schrödinger equation with an external potential, Physics Review A, 76(1) (2007), 513-612.
[18] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, New York: Springer-Verlag, (2000).
[19] C. S. Zhu, C. L. Mu, Z. L. Pu, Attractor for the nonlinear Schrödinger equation with a non-local nonlinear term, J. Dyna. Contr. Syst., 16(4) (2010), 585-603. · Zbl 1203.35269 · doi:10.1007/s10883-010-9108-6
[20] C. S. Zhu, Attractor of the Nonlinear Schrödinger Equation, Commun. Math. Anal., 4(2) (2008), 67-75. · Zbl 1170.35542
[21] L. H. Zhu, W. C. Zhou, and L. J. Zou, Nonlinear gravitational waves and their interactions in a vertical shearing flow (in Chinese), Journal of Nanjing Institute of Meteorology, 27(3) (2004), 405-412.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.