×

A Kronecker approximation with a convex constrained optimization method for blind image restoration. (English) Zbl 1259.90091

Summary: In many problems of linear image restoration, the point spread function is assumed to be known even if this information is usually not available. In practice, both the blur matrix and the restored image should be performed from the observed noisy and blurred image. In this case, one talks about the blind image restoration. In this paper, we propose a method for blind image restoration by using convex constrained optimization techniques for solving large-scale ill-conditioned generalized Sylvester equations. The blur matrix is approximated by a Kronecker product of two matrices having Toeplitz and Hankel forms. The Kronecker product approximation is obtained from an estimation of the point spread function. Numerical examples are given to show the efficiency of our proposed method.

MSC:

90C25 Convex programming
90C90 Applications of mathematical programming

Software:

LSQR; SPG
Full Text: DOI

References:

[1] Andrews H., Hunt B.: Digital image restoration. Prentice-Hall, Engelwood Cliffs, NJ (1977) · Zbl 0379.62098
[2] Ayers G.R., Dainty J.C.: Iterative blind deconvolution method and its applications. Optic. Lett. 13(7), 547–549 (1988) · doi:10.1364/OL.13.000547
[3] Barzilai J., Borwein J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988) · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[4] Bertsekas D.P.: On The Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Automatic Control 21, 174–184 (1976) · Zbl 0326.49025 · doi:10.1109/TAC.1976.1101194
[5] Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Opt. 10, 1196–1211 (2001) · Zbl 1047.90077 · doi:10.1137/S1052623497330963
[6] Birgin E.G., Martínez J.M., Raydan M.: Algorithm 813: SPG-software for convex-constrained optimization. ACM Trans. Math. Software 27, 340–349 (2001) · Zbl 1070.65547 · doi:10.1145/502800.502803
[7] Birgin E.G., Martínez J.M., Raydan M.: Inexact spectral gradient method for convex-constrained optimization. IMA J. Numer. Anal. 23, 539–559 (2003) · Zbl 1047.65042 · doi:10.1093/imanum/23.4.539
[8] Engl H.W.: Regularization methods for the stable solution of inverse problems. Surveys Math. Indust. 3, 71–143 (1993) · Zbl 0776.65043
[9] Engl H.W., Hanke M., Neubauer A.: Regularization of inverse problems. Kluwer, Dordrecht, The Netherlands (1996) · Zbl 0859.65054
[10] Fletcher R.: Low storage methods for unconstrained optimization. Lect. Appl. Math. (AMS) 26, 165–179 (1990) · Zbl 0699.65052
[11] Fletcher, R.: On the Barzilai-Borwein method. In: Qi, L., Teo, K.L., Yang, X.Q. (eds.) Optimization and Control with Applications, pp. 235–256. Springer (2005) · Zbl 1118.90318
[12] Georgiev, P., Pardalos, P.M., Cichocki, A.: Algorithms with high order convergence speed for blind source extraction. Comput. Optim. Appl. 38(1), 123–131 (2007) http://www.springerlink.com/content/77341880px11u570/ · Zbl 1171.65405
[13] Georgiev, P., Pardalos, P.M., Theis, F.: A bilinear algorithm for sparse representations. Comput. Optim. Appl. 38(2), 249–259 (2007) http://www.springerlink.com/content/b628585m61367vh5/ · Zbl 1183.65042
[14] Goldstein A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soci. 70, 709–710 (1964) · Zbl 0142.17101 · doi:10.1090/S0002-9904-1964-11178-2
[15] Grippo L., Lampariello F., Lucidi S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986) · Zbl 0616.65067 · doi:10.1137/0723046
[16] Hager W.W., Park S.C.: The gradient projection method with exact line search. J. Glob. Optim. 30, 103–118 (2004) · Zbl 1136.90513 · doi:10.1023/B:JOGO.0000049118.13265.9b
[17] Hansen, P.C.: http://www2.imm.dtu.dk/\(\sim\)pch/AirTools
[18] Jain A.K.: Fundamentals of digital image processing. Prentice-Hall, Engelwood Cliffs, NJ (1989) · Zbl 0744.68134
[19] La Cruz W., Martínez J.M., Raydan M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1449–1466 (2006) · Zbl 1093.52009 · doi:10.1090/S0025-5718-06-01836-9
[20] Lancaster P., Rodman L.: Algebraic Riccati Equations. Clarendon Press, Oxford (1995) · Zbl 0836.15005
[21] Levitin E.S., Polyak B.T.: Constrained Minimization Problems. USSR Computl. Math. Mathl. Phys. 6, 1–50 (1966) · Zbl 0161.07002 · doi:10.1016/0041-5553(66)90114-5
[22] Liao L.-Z., Qi L.Q., Tam H.W.: A gradient-based continuous method for large-scale optimization problems. J. Glob. Optim. 31, 271–286 (2005) · Zbl 1090.90147 · doi:10.1007/s10898-004-5700-1
[23] Lucy L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974) · doi:10.1086/111605
[24] Kamm J., Nagy J.G.: Kronecker product and SVD approximations in image restoration. Linear Algebra Appl. 284, 177–192 (1998) · Zbl 0936.65052 · doi:10.1016/S0024-3795(98)10024-1
[25] Kamm J., Nagy J.G.: Kronecker product approximations for restoration image with reflexive boundary conditions. SIAM J. Matrix Anal. Appl. 25(3), 829–841 (2004) · Zbl 1068.65055
[26] Paige C.C., Sanders M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71 (1982) · Zbl 0478.65016 · doi:10.1145/355984.355989
[27] Pruessner A., O’Leary D.P.: Blind deconvolution using a regularized structured total least norm algorithm. SIAM J. Matrix Anal. Appl. 24(4), 1018–1037 (2003) · Zbl 1036.65036 · doi:10.1137/S0895479801395446
[28] Raydan M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993) · Zbl 0778.65045 · doi:10.1093/imanum/13.3.321
[29] Richardson W.H.: Bayesian-based iterative method of image restoration. J. Optic. Soc. Am. A 62, 55–59 (1972) · doi:10.1364/JOSA.62.000055
[30] Van Loan C.F., Pitsianis N.P.: Approximation with Kronecker products. In: Moonen, M.S., Golub, G.H. (eds) Linear Algebra for large scale and real time applications, pp. 293–314. Kluwer Academic Publishers, Dordrecht (1993) · Zbl 0813.65078
[31] Yuan G.L.: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11–21 (2009) · Zbl 1154.90623 · doi:10.1007/s11590-008-0086-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.