×

A relative trace identity between \(\text{GL}_{2n}\) and \(\widetilde{\text{Sp}}_n\). (English) Zbl 1259.11054

The paper under review studies the functorial lift from the metaplectic group \(\widetilde{\text{Sp}}_n\) (sometimes denoted as \(\widetilde{\text{Sp}}_{2n}\) in the literature) to \(\text{GL}_{2n}\) via a comparison of relative trace formulas. Such functorial lifts have been studied from different angles, eg. via the Arthur-Selberg trace formula. One of the advantage of the relative trace formulas is that it yields information about the central L-value \(L(1/2, \Pi)\), which generalizes Waldspurger’s celebrated work for the case \(n=1\).
To be precise, let \(k\) be a number field, \(\mathbb{A}\) be its ring of adèles, and \(G\) be a connected reductive \(k\)-group. The relative trace formula associated to a datum \((H_1, \chi_1; H_2, \chi_2)\) concerns the distribution \(f \mapsto I_G(f: H_1, \chi_1; H_2, \chi_2)\), that is, the integration of the kernel function \(K_f(x,y)\) along \(H_1(k) \backslash H_1(\mathbb{A}) \times H_2(k) \backslash H_2(\mathbb{A})\). Here \(f\) lies in the Schwartz space \(\mathcal{S}(G(\mathbb{A}))\); for \(i=1,2\), \(H_i\) is a closed subgroup of \(G\) and \(\chi_i\) is an automorphic character of \(H_i(\mathbb{A})\). We will also need the generalization in which \(\chi_i\) is multiplied by a certain theta function. In the cases encountered in this paper, such integrals are absolutely convergent.
The main result (Theorem 1.1) is a relative trace identity of the form \[ I_{\text{GL}_{2n}}(f: \text{GL}_n \times \text{GL}_n, 1; N, \theta) = I_{\widetilde{\text{Sp}}_n}(\tilde{f}: N', {\theta'}^{-1}; N', \theta') \] for factorizable test function \(f\) and a certain “transfer map” \(f \mapsto \tilde{f}\). Here \(N\), \(N'\) are appropriate maximal unipotent subgroups and \(\theta\), \(\theta'\) are non-degenerate characters. Such an identity is expected to yield some relation between \(|W(\tilde{\varphi})|^2\) (Whittaker functional on \(\widetilde{\text{Sp}}_n\)) and \(W(\varphi)\) (Whittaker functional on \(\text{GL}_{2n}\)) times the \(\text{GL}_n \times \text{GL}_n\)-period \(P(\varphi)\) on \(\text{GL}_{2n}\), under the functorial lift.
This is reduced to another relative trace identity of the form \[ I_{\text{Sp}_{2n}}(f'': \text{Sp}_n \times \text{Sp}_n, 1; N_3, \theta_4 \Theta^{\Phi}_{\psi^{-1}}) = I_{\widetilde{\text{Sp}}_n}(\tilde{f}: N', {\theta'}^{-1}, N', \theta'). \] The latter identity is then proved by matching relative orbital integrals. As usual, one must establish the so-called fundamental lemma for elements in the spherical Hecke algebras. This is done for the unit element first. Then, by using a variant of Plancherel formula together with a computation of Jacquet modules, one deduces the general case. Note that the descent method of Ginzburg-Rallis-Soudry is heavily used in the proofs.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F72 Spectral theory; trace formulas (e.g., that of Selberg)

References:

[1] A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds , Int. Math. Res. Not. IMRN 2008 , no. 5, art. ID rnm155. · Zbl 1161.58002 · doi:10.1093/imrn/rnm155
[2] J. Arthur, “An introduction to the trace formula” in Harmonic Analysis, the Trace Formula, and Shimura Varieties , Clay Math. Proc. 4 , Amer. Math. Soc., Providence, 2005, 1–263. · Zbl 1152.11021
[3] E. M. Baruch and Z. Mao, Central value of automorphic \(L\)-functions , Geom. Funct. Anal. 17 (2007), no. 2, 333–384. · Zbl 1191.11012 · doi:10.1007/s00039-007-0601-3
[4] D. Bump, S. Friedberg, and J. Hoffstein, \(p\)-adic Whittaker functions on the metaplectic group , Duke Math. J. 63 (1991), 379–397. · Zbl 0758.22009 · doi:10.1215/S0012-7094-91-06316-7
[5] W. Casselman, Introduction to the Schwartz space of \(\Gamma\backslash G\) , Canad. J. Math. 41 (1989), 285–320. · Zbl 0723.22010 · doi:10.4153/CJM-1989-015-6
[6] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to \(\GL_ N\) , Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5–30. · Zbl 1028.11029 · doi:10.1007/s10240-001-8187-z
[7] J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables , Bull. Sci. Math. (2) 102 (1978), 307–330. · Zbl 0392.43013
[8] S. Friedberg and H. Jacquet, Linear periods , J. Reine. Angew. Math. 443 (1993), 91–139. · Zbl 0782.11033 · doi:10.1515/crll.1993.443.91
[9] D. Ginzburg, S. Rallis, and D. Soudry, Self-dual automorphic \({\mathrm GL}_ n\) modules and construction of a backward lifting from \({\mathrm GL}_ n\) to classical groups , Int. Math. Res. Not. IMRN 1997 , no. 14, 687–701. · Zbl 0887.11022 · doi:10.1155/S1073792897000457
[10] -, On a correspondence between cuspidal representations of \({\mathrm GL}_ {2n}\) and \(\widetilde{\mathrm Sp}_ {2n}\) , J. Amer. Math. Soc. 12 (1999), 849–907. JSTOR: · Zbl 0928.11027 · doi:10.1090/S0894-0347-99-00300-8
[11] -, On explicit lifts of cusp forms from \({\mathrm GL}_ m\) to classical groups , Ann. of Math. (2) 150 (1999), 807–866. JSTOR: · Zbl 0949.22019 · doi:10.2307/121057
[12] H. Jacquet, On the nonvanishing of some \(L\)-functions , Proc. Indian Acad. Sci. Math. Sci. 97 (1987), 117–155. · Zbl 0659.10031 · doi:10.1007/BF02837819
[13] -, The continuous spectrum of the relative trace formula for \(\GL(3)\) over a quadratic extension , Israel J. Math. 89 (1995), 1–59. · Zbl 0818.11025 · doi:10.1007/BF02808192
[14] H. Jacquet and N. Chen, Positivity of quadratic base change \(L\)-functions , Bull. Soc. Math. France 129 (2001), 33–90. · Zbl 1069.11017
[15] H. Jacquet and S. Rallis, Kloosterman integrals for skew symmetric matrices , Pacific J. Math. 154 (1992), 265–283. · Zbl 0778.11032 · doi:10.2140/pjm.1992.154.265
[16] D. Jiang, Z. Mao, and S. Rallis, A relative Kuznietsov trace formula on \(G_ 2\) , Manuscripta Math. 99 (1999), 411–423. · Zbl 0941.11021 · doi:10.1007/s002290050182
[17] E. Lapid and O. Offen, Compact unitary periods , Compos. Math. 143 (2007), 323–338. · Zbl 1228.11073 · doi:10.1112/S0010437X06002612
[18] Z. Mao, Sur les sommes de Salié relatives , C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1257–1262.
[19] Z. Mao and S. Rallis, Jacquet modules of the Weil representations and families of relative trace identities , Compos. Math. 140 (2004), 855–886. · Zbl 1060.11035 · doi:10.1112/S0010437X04000399
[20] -, “Global method in relative trace identities” in Automorphic Representations, \(L\)-Functions and Applications: Progress and Prospects , Ohio State Univ. Math. Res. Inst. Publ. 11 , de Gruyter, Berlin, 2005, 403–417. · Zbl 1156.11319
[21] -, A Plancherel formula for \(^{\substack{_{2n}/^{\substack{_n\times ^{\substack{_n\) and its application , Compos. Math. 145 (2009), 501–527. · Zbl 1204.43008 · doi:10.1112/S0010437X08003904
[22] K. Martin and D. Whitehouse, Central \(L\)-values and toric periods for \(\GL(2)\) , Int. Math. Res. Not. IMRN 2009 , no. 1, art. ID rnm127, 141–191. · Zbl 1193.11046 · doi:10.1093/imrn/rnn127
[23] O. Offen, Relative spherical functions on \(p\)-adic symmetric spaces (three cases) , Pacific J. Math. 215 (2004), 97–149. · Zbl 1059.22019 · doi:10.2140/pjm.2004.215.97
[24] J.-L. Waldspurger, Endoscopie et analyse harmonique sur les groupe \(p\)-adiques ,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.