×

Number theory as the ultimate physical theory. (English) Zbl 1258.81074

Summary: At the Planck scale doubt is cast on the usual notion of space-time and one cannot think about elementary particles. Thus, the fundamental entities of which we consider our Universe to be composed cannot be particles, fields or strings. In this paper the numbers are considered as the fundamental entities. We discuss the construction of the corresponding physical theory. A hypothesis on the quantum fluctuations of the number field is advanced for discussion. If these fluctuations actually take place then instead of the usual quantum mechanics over the complex number field a new quantum mechanics over an arbitrary field must be developed. Moreover, it is tempting to speculate that a principle of invariance of the fundamental physical laws under a change of the number field does hold. The fluctuations of the number field could appear on the Planck length, in particular in the gravitational collapse or near the cosmological singularity. These fluctuations can lead to the appearance of domains with non-Archimedean \(p\)-adic or finite geometry. We present a short review of the \(p\)-adic mathematics necessary, in this context.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
11E95 \(p\)-adic theory
81Q65 Alternative quantum mechanics (including hidden variables, etc.)
Full Text: DOI

References:

[1] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (CUP, Cambridge, UK 1987); I. Ya. Arefeva and I. V. Volovich, Usp. Fiz. Nauk 146, 655 (1985).
[2] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman, San Francisco 1973); J. A. Wheeler, in Quantum Theory and Gravitation, ed. A. R. Marlow (Academic Press, 1980).
[3] I. V. Volovich, ”p-Adic string”, Class. Quan. Grav. (1987), to be published; Teor. Mat. Fiz. 71, 337 (1987).
[4] V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz. 59, 3 (1983).
[5] J. A. Wheeler, Ann. Phys. 2, 604 (1957); T. Regge, Nuovo Cimento 7, 215 (1958); A. Peres and N. Rosen, Phys. Rev. 118, 335 (1960); B. De Witt, ”The quantization of geometry,” in Gravitation: an Introduction to Current Research, ed. L. Witten (John Wiley and Sons, New York and London 1962); M. A. Markov, Progr. Theor. Phys. Suppl. 85 (1965); H.-J. Treder, in Relativity, Quanta and Cosmology, ed. F. de Finis (New York, 1979). · Zbl 0078.19201 · doi:10.1016/0003-4916(57)90050-7
[6] G.’ t Hooft, Nucl. Phys. B 256, 727 (1985); ”Gravitational Collapse and Quantum Mechanics”, Lectures given at the 5th Adriatic Meeting on Particle Physics, Dubrovnik, June 16–28, 1986. · doi:10.1016/0550-3213(85)90418-3
[7] N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab Selskab Mat.-fis. Medd. 12, 1 (1933); Phys. Rev. 78, 794 (1950).
[8] H. Poincare, La Science et I’Hypothese (Flammarion, Paris, 1923).
[9] H. Weyl, Philosophy of Mathematics and Natural Science (Princeton Univ. Press, 1949).
[10] D. Hilbert, Grundlagen der Geometrie (Leipzig, 1930).
[11] A Passion for Physics. Essays in honour of Geoffrey Chew, including an interview with Chew, eds. C. de Tar, J. Finkelstein and Chung-1 Tan (World Scientific, 1985).
[12] I. Ya. Arefeva and V. Korepin, Pis’ma Zh. Eksp. Teor. Fiz. 20, 680 (1974).
[13] R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, The Analytic S Matrix (Cambridge Univ. Press, 1966); G. F. Chew, The Analytic S Matrix (Benjamin, New York, 1966); N. N. Bogolyubov, A. A. Logunov and I. Todorov, Introduction to Axiomatic Quantum Field Theory (Reading, MA, Benjamin, 1975). · Zbl 0139.46204
[14] M. Jacob, ed. Dual Theory, Phys. Rep. Reprint 1 (North Holland, Amsterdam, 1974).
[15] J. A. Wheeler, Geometrodynamics (Academic Press, New York and London 1962); S. W. Hawking, Nucl. Phys. B 144, 349 (1978).
[16] T. D. Lee, Phys. Lett. B 122, 217 (1983). · doi:10.1016/0370-2693(83)90687-1
[17] M. B. Green, QMC Preprints:QMC-87-10, QMC-87-11 (1987).
[18] H. J. de Vega and N. Sanchez, CERN Preprint TH. 4681 (1987); N. Sanchez, CERN Preprint TH. 4733 (1987).
[19] G. Veneziano, CERN Preprint TH. 4397 (1986).
[20] C. J. Isham, in Quantum Gravity 2, eds. C. J. Isham, R. Penrose and D. W. Sciama (Clarendon Press, Oxford, 1981).
[21] A. Casher, CERN Preprint TH. 4738 (1987).
[22] D. Friedan and S. Shenker, Nucl. Phys. B 281, 509 (1987). · doi:10.1016/0550-3213(87)90418-4
[23] M. J. Bewick and S. G. Rajeev, MIT Preprint CTP-1414 (1986).
[24] B. Riemann, Nachrichten K. Gesellschaft Wiss. Gottingen 13, 133 (1868).
[25] B. Gross and N. Koblitz, Ann. Math. 109, 569 (1979). · Zbl 0406.12010 · doi:10.2307/1971226
[26] Z. I. Borevich and I. R. Shafarevich, Number Theory (Academic Press, 1966); J.-P. Serre, A Course in Arithmetic (Springer-Verlag, 1973); S. Lang, Algebra (Addison-Wesley, 1965).
[27] W. H. Schikhof, ”Non-Archimedean monotone functions,” Report 7916 (Mathematisch Instituut, Nijmegen, The Netherlands, 1979). · Zbl 0463.26009
[28] R. Penrose, in Quantum Gravity 2, eds. C. J. Isham, R. Penrose and D. W. Sciama (Clarendon Press, Oxford, 1981).
[29] S. W. Hawking, ”Quantum Cosmology,” in 300 Years of Gravity (Cambridge Univ. Press, 1986). · Zbl 0966.83519
[30] K. Mahler, Introduction to p-Adic Numbers and Their Functions (Cambridge Univ. Press, 1973); N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions (Springer Verlag, 1984); N. Koblitz, p-Adic Analysis: a Short Course on Recent Work (Cambridge Univ. Press, 1980); W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, 1984); S. Lang, Cyclotomic Fields (Springer Verlag, I and II, 1980).
[31] B. Dwork, Lectures on p-Adic Differential Equations (Springer Verlag, 1982). · Zbl 0502.12021
[32] B. A. Dubrovin, I. M. Krichever and S. P. Novikov, Soviet Sci. Rev. 3, 1 (1982); M. Mulase, J. Diff. Geom. 19, 403 (1984); T. Shiota, Inv. Math. 83, 333 (1986).
[33] Y. Morita, J. Fac. Sci. Univ. Tokyo, Sec. lA 22, 255 (1975).
[34] C. Lovelace, Phys. Lett. B 32, 703 (1970); V. Alessandrini and D. Amati, Nuovo Cimento 4A, 793 (1971). · doi:10.1016/0370-2693(70)90450-8
[35] L. Alvarez-Gaume and P. Nelson, CERN Preprint TH. 4615 (1986).
[36] L. Gerritzen and M. van der Put, Schottky Groups and Mumford Curves, Lecture Notes Math. 817 (Springer, 1980). · Zbl 0442.14009
[37] Yu. Manin and V. G. Drinfeld, J. Reine Angew. Math. 262/263, 239 (1973).
[38] S. Saito, Tokyo Metropolitan Univ. Preprint TMUP-HEL-8613 (1986); TMUP-HEL-8615 (1986); TMUP-HEL-8701 (1987); N. Ishibashi, Y. Matsuo and H. Ooguri, Univ. Tokyo Preprint UT-499 (1986); K. Sogo, Inst. Nucl. Study, Univ. Tokyo Preprint INS-Rep-626 (1987).
[39] L. Alvarez-Gaume, C. Gomez and C. Reina, CERN Preprint TH. 4641 (1987).
[40] M. Martellini and N. Sanchez, CERN Preprint TH. 4680 (1987).
[41] A. Neveu and P. West, CERN Preprints TH. 4697 and 4707 (1987).
[42] A. D. Linde, Rep. Prog. Phys. 47, 925 (1984); L. P. Grischuk and Ya. B. Zeldovich, Preprint Inst. Space Res. 176, Moscow (1982). · doi:10.1088/0034-4885/47/8/002
[43] A. D. Sakharov, Zh. Eks. Teor. Fiz. 87, 375 (1984); I. Ya. Aref’eva and I. V. Volovich, Phys. Lett. B 164, 287 (1985); Nucl. Phys. B 274, 619 (1986); I. Ya. Aref’eva, B. G. Dragovic and I. V. Volovich, Phys. Lett. B 177, 357 (1986); M. Pollock, Phys. Lett. B 174, 251 (1986); A. Popov, ”Chiral fermions in D = 11 supergravity”, Teor. Mat. Fiz., to be published.
[44] I. M. Gelfand, M. I. Graev and I. I. Pjatetski-Shapiro, Theory of Representations and Automorphic Functions (Nauka, Moscow, 1966) [in Russian].
[45] P. A. M. Dirac, in Mathematical Foundations of Quantum Theory, ed. A. R. Marlou (Academic Press, 1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.