×

Heuristic optimisation in financial modelling. (English) Zbl 1254.90301

Summary: There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well-behaved’ in other ways (e.g., discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. We argue that an alternative approach is the application of optimisation heuristics like simulated annealing or genetic algorithms. These methods have been shown to be capable of handling non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, we present several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, we then describe in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, threshold accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. We show, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computations.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
91G10 Portfolio theory

Software:

Tabu search; NMOF

References:

[1] Acker, D., & Duck, N. W. (2007). Reference-day risk and the use of monthly returns data. Journal of Accounting, Auditing and Finance, 22(4), 527–557.
[2] Althöfer, I., & Koschnick, K.-U. (1991). On the convergence of ”Threshold Accepting”. Applied Mathematics & Optimization, 24(1), 183–195. · Zbl 0816.90113 · doi:10.1007/BF01447741
[3] Bakshi, G., Cao, C., Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52(5), 2003–2049. · doi:10.1111/j.1540-6261.1997.tb02749.x
[4] Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., & Stewart, W. R. (1995). Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics, 1(1), 9–32. · Zbl 0853.68154 · doi:10.1007/BF02430363
[5] Bates, D. S. (2003). Empirical option pricing: a retrospection. Journal of Econometrics, 116(1–2), 387–404. · Zbl 1027.62073 · doi:10.1016/S0304-4076(03)00113-1
[6] Blume, M. E. (1971). On the assessment of risk. Journal of Finance, 26(1), 1–10. · doi:10.1111/j.1540-6261.1971.tb00584.x
[7] Chan, L. K. C., & Lakonishok, J. (1992). Robust measurement of beta risk. Journal of Financial and Quantitative Analysis, 27(2), 265–282. · doi:10.2307/2331371
[8] Chan, L. K. C., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: forecasting covariances and choosing the risk model. The Review of Financial Studies, 12(5), 937–974. · doi:10.1093/rfs/12.5.937
[9] Chekhlov, A., Uryasev, S., & Zabarankin, M. (2005). Drawdown measure in portfolio optimization. International Journal of Theoretical and Applied Finance, 8(1), 13–58. · Zbl 1100.91040 · doi:10.1142/S0219024905002767
[10] Constantinides, G. M., & Malliaris, A. G. (1995). Portfolio theory. In R. A. Jarrow, V. Maksimovic, & W. T. Ziemba (Eds.), Handbooks in operations research and management science: Vol. 9: Finance (pp. 1–30). Amsterdam: North-Holland.
[11] Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1, 223–236. · doi:10.1080/713665670
[12] Cont, R., & da Fonseca, J. (2002). Dynamics of implied volatility surfaces. Quantitative Finance, 2, 45–60. · doi:10.1088/1469-7688/2/1/304
[13] Dacorogna, M. M., Gençay, R., Müller, U. A., Olsen, R. B., & Pictet, O. V. (2001). An introduction to high-frequency finance. San Diego: Academic Press.
[14] Dembo, R. S. (1991). Scenario optimization. Annals of Operation Research, 30(1), 63–80. · Zbl 0734.90061 · doi:10.1007/BF02204809
[15] Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130(2), 337–364. · Zbl 1337.62324 · doi:10.1016/j.jeconom.2005.03.005
[16] Dixit, A. K. (1990). Optimization in economic theory (2nd ed.). London: Oxford University Press. · Zbl 0692.76056
[17] Dueck, G., & Scheuer, T. (1990). Threshold Accepting. A general purpose optimization algorithm superior to Simulated Annealing. Journal of Computational Physics, 90(1), 161–175. · Zbl 0707.65039 · doi:10.1016/0021-9991(90)90201-B
[18] Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using Particle Swarm theory. In Proceedings of the sixth international symposium on micromachine and human science, Nagoya, Japan (pp. 39–43).
[19] Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56. · Zbl 1131.91335 · doi:10.1016/0304-405X(93)90023-5
[20] Fama, E. F., & French, K. R. (2004). The capital asset pricing model: theory and evidence. The Journal of Economic Perspectives, 18(3), 25–46. · doi:10.1257/0895330042162430
[21] Gaivoronski, A. A., & Pflug, G. (2005). Value-at-risk in portfolio optimization: properties and computational approach. The Journal of Risk, 7(2), 1–31.
[22] Gendreau, M., & Potvin, J.-Y. (Eds.) (2010). Handbook of metaheuristics (2nd ed.). Berlin: Springer. · Zbl 1198.90002
[23] Genton, M. G., & Ronchetti, E. (2008). Robust prediction of beta. In: E. J. Kontoghiorghes, B. Rustem, & P. Winker (Eds.), Computational methods in financial engineering–essays in honour of Manfred Gilli. Berlin: Springer. · Zbl 1142.91582
[24] Gill, P. E., Murray, W., & Wright, M. H. (1986). Practical optimization. Amsterdam: Elsevier. · Zbl 0503.90062
[25] Gilli, M., & Këllezi, E. (2002a). A global optimization heuristic for portfolio choice with VaR and expected shortfall. In: E. J. Kontoghiorghes, B. Rustem, & S. Siokos (Eds.), Applied optimization series: Computational methods in decision-making, economics and finance (pp. 167–183). Dordrecht: Kluwer Academic. · Zbl 1090.91534
[26] Gilli, M., & Këllezi, E. (2002b). The Threshold Accepting heuristic for index tracking. In P. Pardalos & V. K. Tsitsiringos (Eds.), Applied optimization series: Financial engineering, e-commerce and supply chain (pp. 1–18). Boston: Kluwer Academic. · Zbl 1029.91514
[27] Gilli, M., & Schumann, E. (2010a). Distributed optimisation of a portfolio’s omega. Parallel Computing, 36(7), 381–389. · Zbl 1194.91191 · doi:10.1016/j.parco.2009.10.001
[28] Gilli, M., & Schumann, E. (2010b). Portfolio optimization with ”Threshold Accepting”: a practical guide. In S. E. Satchell (Ed.), Optimizing optimization: the next generation of optimization applications and theory. Amsterdam: Elsevier.
[29] Gilli, M., & Schumann, E. (2010c). Optimization in financial engineering–an essay on ’good’ solutions and misplaced exactitude. Journal of Financial Transformation, 28, 117–122.
[30] Gilli, M., & Schumann, E. (2010d). Optimal enough? Journal of Heuristics. doi: 10.1007/s10732-010-9138-y . · Zbl 1198.91235
[31] Gilli, M., & Schumann, E. (2011). Risk-reward optimisation for long-run investors: an empirical analysis. European Actuarial Journal. Available from http://www.actuaries.org/Munich2009/Programme_EN.cfm .
[32] Gilli, M., & Winker, P. (2003). A global optimization heuristic for estimating agent based models. Computational Statistics & Data Analysis, 42(3), 299–312. · Zbl 1429.65123 · doi:10.1016/S0167-9473(02)00214-1
[33] Gilli, M., & Winker, P. (2008). A review of heuristic optimization methods in econometrics. Swiss finance institute research paper No. 08-12.
[34] Gilli, M., & Winker, P. (2009). Heuristic optimization methods in econometrics. In D. A. Belsley & E. Kontoghiorghes (Eds.), Handbook of computational econometrics. New York: Wiley.
[35] Gilli, M., Këllezi, E., & Hysi, H. (2006). A data-driven optimization heuristic for downside risk minimization. The Journal of Risk, 8(3), 1–18.
[36] Gilli, M., Maringer, D., & Winker, P. (2008). Applications of heuristics in finance. In D. Seese, C. Weinhardt, & F. Schlottmann (Eds.), Handbook on information technology in finance. Berlin: Springer.
[37] Gilli, M., Schumann, E., di Tollo, G., Cabej G. (2010). Constructing 130/30-portfolios with the omega ratio. Journal of Asset Management. doi: 10.1057/jam.2010.25 .
[38] Gilli, M., Maringer, D., & Schumann, E. (2011). Numerical methods and optimization in finance. Amsterdam: Elsevier. · Zbl 1236.91001
[39] Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. · Zbl 0615.90083 · doi:10.1016/0305-0548(86)90048-1
[40] Glover, F. (2007). Tabu Search–uncharted domains. Annals of Operation Research, 149(1), 89–98. · Zbl 1213.90019 · doi:10.1007/s10479-006-0113-9
[41] Glover, F., & Laguna, M. (1997). Tabu Search. Dordrecht: Kluwer Academic. · Zbl 0930.90083
[42] Hamida, S. B., & Cont, R. (2005). Recovering volatility from option prices by evolutionary optimization. Journal of Computational Finance, 8(4), 1–2.
[43] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bonds and currency options. The Review of Financial Studies, 6(2), 327–343. · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[44] Hillier, F. S. (1983). Heuristics: a Gambler’s roll. Interfaces, 13(3), 9–12. · doi:10.1287/inte.13.3.9
[45] Hochreiter, R. (2008). Evolutionary stochastic portfolio optimization. In A. Brabazon & M. O’Neill (Eds.), Natural computing in computational finance. Berlin: Springer. · Zbl 1152.91514
[46] Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Cambridge: MIT Press.
[47] Hoos, H. H., & Stützle, T. (2004). Stochastic Local Search: foundations and applications. San Mateo: Morgan Kaufmann. · Zbl 1126.68032
[48] Ince, O. S., & Porter, R. B. (2006). Individual equity return data from Thomson datastream: handle with care! Journal of Financial Research, 29(4), 463–479. · doi:10.1111/j.1475-6803.2006.00189.x
[49] Keating, C., & Shadwick, B. (2002). An introduction to omega. AIMA Newsletter (April 2002).
[50] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[51] Kirman, A. P. (1992). Whom or what does the representative individual represent? The Journal of Economic Perspectives, 6(2), 117–136.
[52] Kirman, A. P. (1993). Ants, rationality, and recruitment. The Quarterly Journal of Economics, 108(1), 137–156. · doi:10.2307/2118498
[53] Knez, P. J., & Ready, M. J. (1997). On the robustness of size and book-to-market in cross-sectional regressions. Journal of Finance, 52(4), 1355–1382. · doi:10.1111/j.1540-6261.1997.tb01113.x
[54] LeBaron, B. (2000). Agent-based computational finance: suggested readings and early research. Journal of Economic Dynamics & Control, 24, 679–702. · Zbl 0945.91018 · doi:10.1016/S0165-1889(99)00022-6
[55] LeBaron, B. (2006). Agent-based computational finance. In L. H. Tesfatsion & K. H. L. Judd (Eds.), Handbook of computational economics (Vol. II, pp. 1187–1233). Amsterdam: Elsevier.
[56] Lo, A. W. (2008). Hedge funds–an analytic perspective. Princeton: Princeton University Press. · Zbl 1151.91003
[57] Luenberger, D. G. (1998). Investment science. Oxford: Oxford University Press. · Zbl 0912.90027
[58] Madan, D. B. (2001). On the modelling of option prices. Quantitative Finance, 1, 481. · doi:10.1080/713665870
[59] Manaster, S., & Koehler, G. (1982). The calculation of implied variances from the Black–Scholes model: a note. Journal of Finance, 37(1), 227–230. · doi:10.1111/j.1540-6261.1982.tb01105.x
[60] Maniezzo, V., Stützle, T., & Voß, S. (Eds.) (2009). Matheuristics: hybridizing metaheuristics and mathematical programming. Berlin: Springer. · Zbl 1179.90007
[61] Maringer, D. (2004). Finding the relevant risk factors for asset pricing. Computational Statistics & Data Analysis, 47, 339–352. · Zbl 1429.62475 · doi:10.1016/j.csda.2003.11.007
[62] Maringer, D. (2005). Portfolio management with heuristic optimization. Berlin: Springer. · Zbl 1142.91005
[63] Maringer, D. (2008). Risk preferences and loss aversion in portfolio optimization. In E. J. Kontoghiorghes, B. Rustem, & P. Winker (Eds.), Computational methods in financial engineering–essays in honour of Manfred Gilli. Berlin: Springer. · Zbl 1142.91545
[64] Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
[65] Markowitz, H. M. (1959). Portfolio selection. New York: Wiley.
[66] Martin, R. D., & Simin, T. T. (2003). Outlier-resistant estimates of beta. Financial Analysts Journal, 59(5), 56–69. · doi:10.2469/faj.v59.n5.2564
[67] Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: modern heuristics. Berlin: Springer. · Zbl 1058.68105
[68] Mikhailov, S., & Nögel, U. (2003). Heston’s stochastic volatility model implementation, calibration and some extensions. Wilmott, pp. 74–79.
[69] Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100. · Zbl 0889.90119 · doi:10.1016/S0305-0548(97)00031-2
[70] Moscato, P. (1989). On evolution, search, optimization, Genetic Algorithms and martial arts–towards memetic algorithms. Technical Report 790, CalTech California Institute of Technology.
[71] Moscato, P., & Fontanari, J. F. (1990). Stochastic versus deterministic update in Simulated Annealing. Physics Letters A, 146(4), 204–208. · doi:10.1016/0375-9601(90)90166-L
[72] Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 60(4), 473–489. · doi:10.1086/296409
[73] Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics (2nd ed.). Berlin: Springer. · Zbl 1116.90019
[74] Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21–41.
[75] Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880. · Zbl 0547.62046 · doi:10.1080/01621459.1984.10477105
[76] Schlottmann, F., & Seese, D. (2004). Modern heuristics for finance problems: a survey of selected methods and applications. In S. T. Rachev (Ed.), Handbook of computational and numerical methods in finance. Basel: Birkhäuser. · Zbl 1126.91375
[77] Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record breaking optimization results using the ruin and recreate principle. Journal of Computational Physics, 159(2), 139–171. · Zbl 0997.90105 · doi:10.1006/jcph.1999.6413
[78] Sortino, F., van der Meer, R., & Plantinga, A. (1999). The Dutch triangle. Journal of Portfolio Management, 26(1), 50–58. · doi:10.3905/jpm.1999.319775
[79] Storn, R. M., & Price, K. V. (1997). Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[80] Svensson, L. E. O. (1994). Estimating and interpreting forward interest rates: Sweden 1992–1994. IMF Working Paper 94/114.
[81] Talbi, E.-G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5), 541–564. · doi:10.1023/A:1016540724870
[82] Vasicek, O. A. (1973). A note on the cross-sectional information in Bayesian estimation of security betas. Journal of Finance, 28(5), 1233–1239. · doi:10.1111/j.1540-6261.1973.tb01452.x
[83] Winker, P. (2001). Optimization heuristics in econometrics: applications of Threshold Accepting. New York: Wiley. · Zbl 1001.62043
[84] Winker, P., & Fang, K.-T. (1997). Application of Threshold-Accepting to the evaluation of the discrepancy of a set of points. SIAM Journal on Numerical Analysis, 34(5), 2028–2042. · Zbl 0888.65021 · doi:10.1137/S0036142995286076
[85] Winker, P., & Gilli, M. (2004). Applications of optimization heuristics to estimation and modelling problems. Computational Statistics and Data Analysis, 47(2), 211–223. · Zbl 1429.62034 · doi:10.1016/j.csda.2003.11.026
[86] Winker, P., & Maringer, D. (2007). The Threshold Accepting optimisation algorithm in economics and statistics. In E. J. Kontoghiorghes & C. Gatu (Eds.), Advances in computational management science: Vol. 9. Optimisation, econometric and financial analysis (pp. 107–125). Berlin: Springer. · Zbl 1121.90132
[87] Winker, P., Gilli, M., & Jeleskovic, V. (2007). An objective function for simulation based inference on exchange rate data. Journal of Economic Interaction and Coordination, 2, 125–145. · doi:10.1007/s11403-007-0020-4
[88] Zanakis, S. H., & Evans, J. R. (1981). Heuristic ”optimization”: why, when, and how to use it. Interfaces, 11(5), 84–91. · doi:10.1287/inte.11.5.84
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.