×

A stochastic programming model for the optimal electricity market bid problem with bilateral contracts for thermal and combined cycle units. (English) Zbl 1254.90138

Summary: This paper develops a stochastic programming model that integrates the most recent regulation rules of the Spanish peninsular system for bilateral contracts in the day-ahead optimal bid problem. Our model allows a price-taker generation company to decide the unit commitment of the thermal and combined cycle programming units, the economic dispatch of the bilateral contract between all the programming units and the optimal sale bid by observing the Spanish peninsular regulation. The model was solved using real data of a typical generation company and a set of scenarios for the Spanish market price. The results are reported and analyzed.

MSC:

90C15 Stochastic programming
90C90 Applications of mathematical programming

Software:

CPLEX; AMPL

References:

[1] Anderson, E. J., & Philpott, A. B. (2002). Optimal offer construction in electricity markets. Mathematics of Operations Research, 27(1), 82–100. · Zbl 1082.91516 · doi:10.1287/moor.27.1.82.338
[2] Anderson, E. J., & Philpott, A. B. (2003). Using supply functions for offering market generation into an electricity market. Operations Research, 50(3), 477–489. · Zbl 1163.91459 · doi:10.1287/opre.50.3.477.7748
[3] Bachmann, R., Nielsen, H., Warner, J., & Kehlhofer, R. (1999). Combined cycle gas & steam turbine power plants (2nd edn.). Tulsa: PennWell.
[4] Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer. · Zbl 0892.90142
[5] Bjelogrlic, M. R. (2000). Inclusion of combined cycle plants into optimal resource scheduling. In Proc. 2000 IEEE PES summer meeting (pp. 189–195).
[6] Carrion, A. J. M. M. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371–1378. · doi:10.1109/TPWRS.2006.876672
[7] CESUR (2011) Spain cesur bilateral contracts auctions. http://www.subastascesur.omel.es/ . Accessed 27 January 2011
[8] Conejo, N. F. J. A. J., & Arroyo, J. M. (2002). Price-taker bidding strategy under price uncertainty. IEEE Transactions on Power Systems, 17(4), 1081–1088. · doi:10.1109/TPWRS.2002.804948
[9] Corchero, C., & Heredia, F.-J. (2011). A stochastic programming model for the thermal optimal day-ahead bid problem with physical futures contracts. Computers and Operations Research. doi: 10.1016/j.cor.2011.01.008 . · Zbl 1210.91036
[10] CPLEX (2008). CPLEX. optimization subroutine library guide and reference. Version, 11, 0 CPLEX Division, ILOG Inc., Incline Village, NV, USA.
[11] Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL: a modeling language for mathematical programming (2nd edn.). Brooks/Cole-Thomson Learning. · Zbl 0701.90062
[12] Gountis, V. P., & Bakirtzis, A. G. (2004). Bidding strategies for electricity producers in a competitive electricity marketplace. IEEE Transactions on Power Systems, 19, 356–365. · doi:10.1109/TPWRS.2003.821474
[13] Gröwe-Kuska, N., Heitsch, H., & Römisch, W. (2003). Scenario reduction and scenario tree construction for power management problems. In Proc. IEEE PowerTech 3, Bologna, Italy.
[14] Heredia, F. J., Rider, M. J., & Corchero, C. (2010). Optimal bidding strategies for thermal and generic programming units in the day-ahead electricity market. IEEETransactions on Power Systems, 25(3), 1504–1518. · doi:10.1109/TPWRS.2009.2038269
[15] Li, T., & Shahidehpour, M. (2005). Price-based unit commitment: a case of lagrangian relaxation versus mixed integer programming. IEEE Transactions on Power Systems, 20(4), 2015–2025. · doi:10.1109/TPWRS.2005.857391
[16] Lu, B., & Shahidehpour, M. (2004). Short-term scheduling of combined cycle units. IEEE Transactions on Power Systems, 19(3), 1616–1625. · doi:10.1109/TPWRS.2004.831706
[17] MEFF (2011) Spain virtual power plant auctions. https://www.subasta-epe.com/ . Accessed 27 January 2011.
[18] Nabona, N., & Pages, A. (2007). A three-stage short-term electric power planning procedure for a generation company in a liberalized market. International Journal of Electric Power Systems, 29(5), 408–421. · doi:10.1016/j.ijepes.2006.10.004
[19] Neame, P., Philpott, A. B., & Pritchard, G. (2003). Offer stack optimisation in electricity pool markets. Operations Research, 51(3), 397–408. · Zbl 1163.90561 · doi:10.1287/opre.51.3.397.14955
[20] Ni, E., Luh, P. B., & Rourke, S. (2004). Optimal integrated generation bidding and scheduling with risk management under a deregulated power market. IEEE Transactions on Power Systems, 19(1), 600–1088. · doi:10.1109/TPWRS.2003.818695
[21] Nowak, M., Schultz, R., & Westphalen, M. (2005). A stochastic integer programming model for incorporating day-ahead trading of electricity into hydro-thermal unit commitment. Optimization and Engineering, 6, 163–176. · Zbl 1093.90032 · doi:10.1007/s11081-005-6794-0
[22] OMEL (2011) Market operator of the electricity market of mainland Spain. http://www.omel.es/ . Accessed 27 January 2011.
[23] Shresta, G. B., Kai, S., & Goel, L. (2004). An efficient stochastic self-scheduling technique for power producers in the deregulated power market. Electric Power Systems Research, 71, 91–98. · doi:10.1016/j.epsr.2003.12.019
[24] Triki, C., Beraldi, P., & Gross, G. (2005). Optimal capacity allocation in multi-auction electricity markets under uncertainty. Computers & Operations Research, 32(2), 201–217. · Zbl 1073.91046 · doi:10.1016/S0305-0548(03)00211-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.