×

Fake projective planes. (English) Zbl 1253.14034

The paper under review concerns fake projective planes, that is, smooth compact complex surfaces which are not isomorphic to the complex projective plane, yet have the same Betti numbers \[ b_0=b_2=b_4 = 1,\;\;\; b_1=b_3=0. \] Not only are such surfaces automatically projective and of general type, but they are also known to be quotients of the unit ball in \(\mathbb{C}^2\) by a torsion-free cocompact discrete subgroup of PU\((2,1)\).
The first example of a fake projective plane is due to D. Mumford [Am. J. Math. 101, 233–244 (1979; Zbl 0433.14021)], using \(p\)-adic uniformisation. Later examples were constructed by M.-N. Ishida and F. Kato [Tohoku Math. J., II. Ser. 50, No. 4, 537–555 (1998; Zbl 0962.14031)] and J. Keum [Topology 45, No. 5, 919–927 (2006; Zbl 1099.14031), Sci. China, Math. 54, No. 8, 1665–1678 (2011; Zbl 1238.14027)].
Already Mumford proves that there are only finitely many fake projective planes up to isomorphism. The present paper initiates a classification of fake projective planes, in big part by group-theoretic means. It should be seen in conjunction with the addendum [Invent. Math. 182, No. 1, 213–227 (2010; Zbl 1388.14074)] and the heavily computer-aided work of D. I. Cartwright and T. Steger [C. R., Math., Acad. Sci. Paris 348, No. 1-2, 11–13 (2010; Zbl 1180.14039)]. Altogether, it is proved that there are
– twenty eight classes of fake projective planes,
– fifty fake projective planes up to isometry with respect to the Poincaré metric, and
– one hundred fake projective planes up to biholomorphism (since each isometry class of fake projective planes supports two distinct complex structures as a Riemannian manifold).

MSC:

14J29 Surfaces of general type
11R29 Class numbers, class groups, discriminants
22E40 Discrete subgroups of Lie groups

References:

[1] Bombieri, E.: Canonical models of surfaces of general type. Publ. Math., Inst. Hautes Étud. Sci. 42, 171–220 (1972) · Zbl 0259.14005 · doi:10.1007/BF02685880
[2] Borel, A., Prasad, G.: Finiteness theorems for discrete subgroups of bounded covolume in semisimple groups. Publ. Math., Inst. Hautes Étud. Sci. 69, 119–171 (1989) · Zbl 0707.11032 · doi:10.1007/BF02698843
[3] Borevich, Z.I., Shafarevich, I.R.: Number theory. Academic Press, New York (1966) · Zbl 0145.04902
[4] Friedman, E.: Analytic formulas for the regulator of a number field. Invent. Math. 98, 599–622 (1989) · Zbl 0694.12006 · doi:10.1007/BF01393839
[5] Holzapfel, R.-P.: Ball and surface arithmetics. Vieweg & Sohn, Wiesbaden (1998) · Zbl 0980.14026
[6] Ishida, M.-N., Kato, F.: The strong rigidity theorem for non-archimedean uniformization. Tohoku Math. J. 50, 537–555 (1998) · Zbl 0962.14031 · doi:10.2748/tmj/1178224897
[7] Klingler, B.: Sur la rigidité de certains groupes fonndamentaux, l’arithméticité des réseaux hyperboliques complexes, et les ’faux plans projectifs’. Invent. Math. 153, 105–143 (2003) · Zbl 1026.32049 · doi:10.1007/s00222-002-0283-2
[8] Kollár, J.: Shafarevich maps and automorphic forms. Princeton University Press, Princeton (1995) · Zbl 0871.14015
[9] Martinet, J.: Petits discriminants des corps de nombres. Number theory days, 1980 (Exeter, 1980), Lond. Math. Soc. Lect. Note Ser., vol. 56, pp. 151–193. Cambridge Univ. Press, Cambridge-New York, (1982)
[10] Mostow, G.D.: Strong rigidity of locally symmetric spaces. In: Ann. Math. Stud., vol. 78. Princeton University Press, Princeton (1973) · Zbl 0265.53039
[11] Mumford, D.: An algebraic surface with K ample, K 2=9, p g =q=0. Am. J. Math. 101, 233–244 (1979) · Zbl 0433.14021 · doi:10.2307/2373947
[12] Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, 3rd edn. Springer, New York (2000) · Zbl 1034.11054
[13] Odlyzko, A.M.: Some analytic estimates of class numbers and discriminants. Invent. Math. 29, 275–286 (1975) · Zbl 0306.12005 · doi:10.1007/BF01389854
[14] Odlyzko, A.M.: Discriminant bounds. http://www.dtc.umn.edu/dlyzko/unpublished/index.html. · Zbl 0286.12006
[15] Platonov, V.P., Rapinchuk, A.S.: Algebraic groups and Number theory. Academic Press, New York (1994) · Zbl 0841.20046
[16] Prasad, G.: Volumes of S-arithmetic quotients of semi-simple groups. Publ. Math., Inst. Hautes Étud. Sci. 69, 91–117 (1989) · Zbl 0695.22005 · doi:10.1007/BF02698841
[17] Prasad, G., Rapinchuk, A.S.: Computation of the metaplectic kernel. Publ. Math., Inst. Hautes Étud. Sci. 84, 91–187 (1996) · Zbl 0941.22019 · doi:10.1007/BF02698836
[18] Prasad, G., Yu, J.-K.: On finite group actions on reductive groups and buildings. Invent. Math. 147, 545–560 (2002) · Zbl 1020.22003 · doi:10.1007/s002220100182
[19] Reider, I.: Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. 127, 309–316 (1988) · Zbl 0663.14010 · doi:10.2307/2007055
[20] Riehm, C.: The norm 1 group of \(\mathfrak{p}\) -adic division algebra. Am. J. Math. 92, 499–523 (1970) · Zbl 0199.37601 · doi:10.2307/2373336
[21] Rogawski, J.D.: Automorphic representations of unitary groups in three variables. In: Ann. Math. Stud., vol. 123. Princeton University Press, Princeton (1990) · Zbl 0724.11031
[22] Scharlau, W.: Quadratic and hermitian forms. Springer, New York (1985) · Zbl 0584.10010
[23] Serre, J.-P.: Cohomologie des groupes discrets. In: Ann. Math. Stud., vol. 70. Princeton University Press, Princeton (1971) · Zbl 0229.57016
[24] Serre, J.-P.: A course in arithmetic. Springer, New York (1973) · Zbl 0256.12001
[25] Serre, J.-P.: Galois cohomology. Springer, New York (1997)
[26] Siegel, C.L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gött., 87–102 (1969) · Zbl 0186.08804
[27] Slavutskii, I.Sh.: On the Zimmert estimate for the regulator of an algebraic field. English translation of Mat. Zametki in Math. Notes 51, 531–532 (1992)
[28] Tits, J.: Classification of algebraic semisimple groups. Algebraic Groups and Discontinuous Subgroups. Proc. Am. Math. Soc. Symp. Pure Math. 9, 33–62 (1966) · Zbl 0238.20052
[29] Tits, J.: Reductive groups over local fields. Proc. Am. Math. Soc. Symp. Pure Math. 33(1), 29–69 (1979) · Zbl 0415.20035
[30] Tsuyumine, S.: On values of L-functions of totally real algebraic number fields at integers. Acta Arith. 76(4), 359–392 (1996) · Zbl 0899.11020
[31] Washington, L.C.: Introduction to cyclotomic fields, 2nd edn. In: Grad. Texts Math., vol. 83. Springer, New York, (1997) · Zbl 0966.11047
[32] Yeung, S.-K.: Integrality and arithmeticity of co-compact lattices corresponding to certain complex two-ball quotients of Picard number one. Asian J. Math. 8, 107–130 (2004) · Zbl 1088.22007
[33] Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62, 367–380 (1981) · Zbl 0456.12003 · doi:10.1007/BF01394249
[34] The Bordeaux Database, Tables obtainable from: ftp://megrez.math.u-bordeaux.fr/pub/numberfields/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.