×

Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors. (English) Zbl 1252.62015

Summary: Because of their multimodality, mixture posterior distributions are difficult to sample with standard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhance the sampling of MCMC in this context, using a biasing procedure which originates from computational statistical physics. The principle is first to choose a “reaction coordinate”, that is, a “direction” in which the target distribution is multimodal. In a second step, the marginal log-density of the reaction coordinate with respect to the posterior distribution is estimated; minus this quantity is called “free energy” in the computational statistical physics literature. To this end, we use adaptive biasing Markov chain algorithms which adapt their targeted invariant distribution on the fly, in order to overcome sampling barriers along the chosen reaction coordinate. Finally, we perform an importance sampling step in order to remove the bias and recover the true posterior. The efficiency factor of the importance sampling step can easily be estimated a priori once the bias is known, and appears to be rather large for the test cases we considered. A crucial point is the choice of the reaction coordinate. One standard choice (used for example in the classical Wang-Landau algorithm) is minus the log-posterior density. We discuss other choices. We show in particular that the hyper-parameter that determines the order of magnitude of the variance of each component is both a convenient and an efficient reaction coordinate. We also show how to adapt the method to compute the evidence (marginal likelihood) of a mixture model. We illustrate our approach by analyzing two real data sets.

MSC:

62F15 Bayesian inference
65C40 Numerical analysis or methods applied to Markov chains
65C60 Computational problems in statistics (MSC2010)

References:

[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications, Oxford (2000) · Zbl 0957.49001
[2] Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008) · doi:10.1007/s11222-008-9110-y
[3] Atchadé, Y.F., Liu, J.S.: The Wang-Landau algorithm for Monte-Carlo computation in general state spaces. Stat. Sin. 20(1), 209–233 (2010) · Zbl 1181.62022
[4] Balian, R.: From Microphysics to Macrophysics. Methods and Applications of Statistical Physics, vols. I, II. Springer, Berlin (2007) · Zbl 1144.82001
[5] Basford, K.E., Mclachlan, G.J., York, M.G.: Modelling the distribution of stamp paper thickness via finite normal mixtures: the 1872 Hidalgo stamp issue of Mexico revisited. J. Appl. Stat. 24(2), 169–180 (1997) · doi:10.1080/02664769723783
[6] Bussi, G., Laio, A., Parrinello, M.: Equilibrium free energies from nonequilibrium metadynamics. Phys. Rev. Lett. 96(9), 090601 (2006)
[7] Celeux, G., Hurn, M., Robert, C.P.: Computational and inferential difficulties with mixture posterior distributions. J. Am. Stat. Assoc. 95, 957–970 (2000) · Zbl 0999.62020 · doi:10.1080/01621459.2000.10474285
[8] Chipot, C., Lelièvre, T.: Enhanced sampling of multidimensional free-energy landscapes using adaptive biasing forces. arXiv preprint arXiv:1008.3457 [math.AP] (2010)
[9] Darve, E., Pohorille, A.: Calculating free energies using average force. J. Chem. Phys. 115(20), 9169–9183 (2001) · doi:10.1063/1.1410978
[10] Dickson, B.M., Legoll, F., Lelièvre, T., Stoltz, G., Fleura-Lessard, P.: Free energy calculations: an efficient adaptive biasing potential method. J. Phys. Chem. B 114(17), 5823–5830 (2010) · doi:10.1021/jp100926h
[11] Diebolt, J., Robert, C.P.: Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat. Soc. B 56, 363–375 (1994) · Zbl 0796.62028
[12] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[13] Frühwirth-Schnatter, S.: Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J. Am. Stat. Assoc. 96(453), 194–209 (2001) · Zbl 1015.62022 · doi:10.1198/016214501750333063
[14] Frühwirth-Schnatter, S.: Finite Mixture and Markov Switching Models. Springer, Berlin (2006) · Zbl 1108.62002
[15] Gelman, A., Meng, X.L.: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 13(2), 163–185 (1998) · Zbl 0966.65004 · doi:10.1214/ss/1028905934
[16] Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[17] Hénin, J., Chipot, C.: Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 121(7), 2904–2914 (2004) · doi:10.1063/1.1773132
[18] Iba, Y.: Extended ensemble Monte Carlo. Int. J. Mod. Phys. C 12(5), 623–656 (2001) · doi:10.1142/S0129183101001912
[19] Izenman, A.J., Sommer, C.J.: Philatelic mixtures and multimodal densities. J. Am. Stat. Assoc. 83(404), 941–953 (1988) · doi:10.1080/01621459.1988.10478683
[20] Jasra, A., Holmes, C.C., Stephens, D.A.: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Stat. Sci. 50–67 (2005) · Zbl 1100.62032
[21] Jourdain, B., Lelièvre, T., Roux, R.: Existence, uniqueness and convergence of a particle approximation for the adaptive biasing force process. ESAIM-Math. Model. Numer. 44(5), 831–865 (2010) · Zbl 1201.65011 · doi:10.1051/m2an/2010044
[22] Kong, A., Liu, J.S., Wong, W.H.: Sequential imputation and Bayesian missing data problems. J. Am. Stat. Assoc. 89, 278–288 (1994) · Zbl 0800.62166 · doi:10.1080/01621459.1994.10476469
[23] Lelièvre, T., Minoukadeh, K.: Longtime convergence of an adaptive biasing force method: The bi-channel case. Arch. Ration. Mech. Anal. (2011, accepted) · Zbl 1257.82086
[24] Lelièvre, T., Rousset, M., Stoltz, G.: Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys. 126, 134111 (2007) · Zbl 1197.82087
[25] Lelièvre, T., Rousset, M., Stoltz, G.: Long-time convergence of an adaptive biasing force method. Nonlinearity 21, 1155–1181 (2008) · Zbl 1146.35320 · doi:10.1088/0951-7715/21/6/001
[26] Lelièvre, T., Rousset, M., Stoltz, G.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London (2010) · Zbl 1227.82002
[27] Liang, F.: A generalized Wang-Landau algorithm for Monte-Carlo computation. J. Am. Stat. Assoc. 100(472), 1311–1327 (2005) · Zbl 1117.62384 · doi:10.1198/016214505000000259
[28] Liang, F.: Trajectory averaging for stochastic approximation MCMC algorithms. Ann. Stat. 38(5), 2823–2856 (2010) · Zbl 1218.60064 · doi:10.1214/10-AOS807
[29] Marin, J.M., Robert, C.P.: Bayesian Core: A Practical Approach to Computational Bayesian Statistics. Springer, Berlin (2007) · Zbl 1137.62013
[30] Marsili, S., Barducci, A., Chelli, R., Procacci, P., Schettino, V.: Self-healing Umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. J. Phys. Chem. B 110(29), 14011–14013 (2006) · doi:10.1021/jp062755j
[31] McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000) · Zbl 0963.62061
[32] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1091 (1953) · doi:10.1063/1.1699114
[33] Neal, R.M.: Annealed importance sampling. Stat. Comput. 11, 125–139 (2001) · doi:10.1023/A:1008923215028
[34] Piana, S., Laio, A.: A bias-exchange approach to protein folding. J. Phys. Chem. B 111(17), 4553–4559 (2007) · doi:10.1021/jp067873l
[35] Raiteri, P., Laio, A., Gervasio, F.L., Micheletti, C., Parrinello, M.: Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B 110(8), 3533–3539 (2006) · doi:10.1021/jp054359r
[36] Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. B 59(4), 731–792 (1997) · Zbl 0891.62020 · doi:10.1111/1467-9868.00095
[37] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)
[38] Titterington, D.M., Smith, A.F., Makov, U.E.: Statistical Analysis of Finite Mixture Distributions. Wiley, New York (1986) · Zbl 0646.62013
[39] Wang, F.G., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64(5), 056101 (2001a)
[40] Wang, F.G., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001b) · doi:10.1103/PhysRevLett.86.2050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.