×

Interaction between nonlinear diffusion and geometry of domain. (English) Zbl 1243.35096

Summary: Let \(\Omega \) be a domain in \(\mathbb R^N\), where \(N \geqslant 2\) and \(\partial \Omega \) is not necessarily bounded. We consider nonlinear diffusion equations of the form \(\partial _tu=\Delta \varphi (u)\). Let \(u=u(x,t)\) be the solution of either the initial-boundary value problem over \(\Omega \), where the initial value equals zero and the boundary value equals 1, or the Cauchy problem where the initial data is the characteristic function of the set \(\mathbb R^N \setminus \Omega \).
We consider an open ball \(B\) in \(\Omega \) whose closure intersects \(\partial \Omega \) only at one point, and we derive asymptotic estimates for the content of substance in \(B\) for short times in terms of geometry of \(\Omega \). Also, we obtain a characterization of the hyperplane involving a stationary level surface of \(u\) by using the sliding method due to H. Berestycki, L. A. Caffarelli and L. Nirenberg [Commun. Pure Appl. Math. 50, No. 11, 1089–1111 (1997; Zbl 0906.35035)]. These results tell us about interactions between nonlinear diffusion and geometry of domain.

MSC:

35K59 Quasilinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35K65 Degenerate parabolic equations

Citations:

Zbl 0906.35035

References:

[1] Atkinson, F. V.; Peletier, L. A., Similarity solutions of the nonlinear diffusion equation, Arch. Ration. Mech. Anal., 54, 373-392 (1974) · Zbl 0293.35039
[2] Berestycki, H.; Caffarelli, L. A.; Nirenberg, L., Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50, 1089-1111 (1997) · Zbl 0906.35035
[3] Bertsch, M.; Kersner, R.; Peletier, L. A., Positivity versus localization in degenerate diffusion equations, Nonlinear Anal., 9, 987-1008 (1985) · Zbl 0596.35073
[4] Calderón, A. P.; Zygmund, A., Local properties of solutions of elliptic partial differential equations, Studia Math., 20, 171-225 (1961) · Zbl 0099.30103
[5] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, Tokyo · Zbl 0691.35001
[6] Ladyženskaja, O. A.; Solonnikov, V. A.; Uralʼceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23 (1968), Amer. Math. Soc. · Zbl 0174.15403
[7] Magnanini, R.; Sakaguchi, S., Interaction between degenerate diffusion and shape of domain, Proc. Roy. Soc. Edinburgh Sect. A, 137, 373-388 (2007) · Zbl 1120.35057
[8] Magnanini, R.; Sakaguchi, S., Stationary isothermic surfaces for unbounded domains, Indiana Univ. Math. J., 56, 2723-2738 (2007) · Zbl 1140.35460
[9] Magnanini, R.; Sakaguchi, S., Nonlinear diffusion with a bounded stationary level surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 937-952 (2010) · Zbl 1194.35209
[10] Magnanini, R.; Sakaguchi, S., Stationary isothermic surfaces and some characterizations of the hyperplane in the \(N\)-dimensional Euclidean space, J. Differential Equations, 248, 1112-1119 (2010) · Zbl 1213.35326
[11] Sard, A., The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc., 48, 883-890 (1942) · Zbl 0063.06720
[12] Sternberg, S., Lectures on Differential Geometry (1983), Chelsea Publishing Co.: Chelsea Publishing Co. New York · Zbl 0518.53001
[13] Varadhan, S. R.S., On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., 20, 431-455 (1967) · Zbl 0155.16503
[14] Ziemer, W. P., Weakly Differentiable Functions, Grad. Texts in Math., vol. 120 (1989), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong · Zbl 0177.08006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.